mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
Specialised basic math functions for SYCL device.
This commit is contained in:
parent
b5c75351e3
commit
c5130dedbe
13
Eigen/Core
13
Eigen/Core
@ -43,10 +43,12 @@
|
||||
#else
|
||||
#define EIGEN_DEVICE_FUNC
|
||||
#endif
|
||||
|
||||
#else
|
||||
#define EIGEN_DEVICE_FUNC
|
||||
#endif
|
||||
|
||||
#if defined(EIGEN_USE_SYCL)
|
||||
#define EIGEN_DONT_VECTORIZE
|
||||
#endif
|
||||
|
||||
// When compiling CUDA device code with NVCC, pull in math functions from the
|
||||
@ -283,6 +285,15 @@
|
||||
#include <intrin.h>
|
||||
#endif
|
||||
|
||||
#if defined(__SYCL_DEVICE_ONLY__)
|
||||
#undef min
|
||||
#undef max
|
||||
#undef isnan
|
||||
#undef isinf
|
||||
#undef isfinite
|
||||
#include <SYCL/sycl.hpp>
|
||||
#endif
|
||||
|
||||
/** \brief Namespace containing all symbols from the %Eigen library. */
|
||||
namespace Eigen {
|
||||
|
||||
|
@ -413,7 +413,7 @@ inline NewType cast(const OldType& x)
|
||||
static inline Scalar run(const Scalar& x)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL)
|
||||
using std::round;
|
||||
EIGEN_USING_STD_MATH(round);
|
||||
return round(x);
|
||||
}
|
||||
};
|
||||
@ -640,7 +640,7 @@ template<typename Scalar>
|
||||
struct random_default_impl<Scalar, false, true>
|
||||
{
|
||||
static inline Scalar run(const Scalar& x, const Scalar& y)
|
||||
{
|
||||
{
|
||||
typedef typename conditional<NumTraits<Scalar>::IsSigned,std::ptrdiff_t,std::size_t>::type ScalarX;
|
||||
if(y<x)
|
||||
return x;
|
||||
@ -954,6 +954,11 @@ inline EIGEN_MATHFUNC_RETVAL(log1p, Scalar) log1p(const Scalar& x)
|
||||
return EIGEN_MATHFUNC_IMPL(log1p, Scalar)::run(x);
|
||||
}
|
||||
|
||||
#if defined(__SYCL_DEVICE_ONLY__)
|
||||
EIGEN_ALWAYS_INLINE float log1p(float x) { return cl::sycl::log1p(x); }
|
||||
EIGEN_ALWAYS_INLINE double log1p(double x) { return cl::sycl::log1p(x); }
|
||||
#endif // defined(__SYCL_DEVICE_ONLY__)
|
||||
|
||||
#ifdef __CUDACC__
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
float log1p(const float &x) { return ::log1pf(x); }
|
||||
@ -969,6 +974,11 @@ inline typename internal::pow_impl<ScalarX,ScalarY>::result_type pow(const Scala
|
||||
return internal::pow_impl<ScalarX,ScalarY>::run(x, y);
|
||||
}
|
||||
|
||||
#if defined(__SYCL_DEVICE_ONLY__)
|
||||
EIGEN_ALWAYS_INLINE float pow(float x, float y) { return cl::sycl::pow(x, y); }
|
||||
EIGEN_ALWAYS_INLINE double pow(double x, double y) { return cl::sycl::pow(x, y); }
|
||||
#endif // defined(__SYCL_DEVICE_ONLY__)
|
||||
|
||||
template<typename T> EIGEN_DEVICE_FUNC bool (isnan) (const T &x) { return internal::isnan_impl(x); }
|
||||
template<typename T> EIGEN_DEVICE_FUNC bool (isinf) (const T &x) { return internal::isinf_impl(x); }
|
||||
template<typename T> EIGEN_DEVICE_FUNC bool (isfinite)(const T &x) { return internal::isfinite_impl(x); }
|
||||
@ -980,6 +990,11 @@ inline EIGEN_MATHFUNC_RETVAL(round, Scalar) round(const Scalar& x)
|
||||
return EIGEN_MATHFUNC_IMPL(round, Scalar)::run(x);
|
||||
}
|
||||
|
||||
#if defined(__SYCL_DEVICE_ONLY__)
|
||||
EIGEN_ALWAYS_INLINE float round(float x) { return cl::sycl::round(x); }
|
||||
EIGEN_ALWAYS_INLINE double round(double x) { return cl::sycl::round(x); }
|
||||
#endif // defined(__SYCL_DEVICE_ONLY__)
|
||||
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC
|
||||
T (floor)(const T& x)
|
||||
@ -988,6 +1003,11 @@ T (floor)(const T& x)
|
||||
return floor(x);
|
||||
}
|
||||
|
||||
#if defined(__SYCL_DEVICE_ONLY__)
|
||||
EIGEN_ALWAYS_INLINE float floor(float x) { return cl::sycl::floor(x); }
|
||||
EIGEN_ALWAYS_INLINE double floor(double x) { return cl::sycl::floor(x); }
|
||||
#endif // defined(__SYCL_DEVICE_ONLY__)
|
||||
|
||||
#ifdef __CUDACC__
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
float floor(const float &x) { return ::floorf(x); }
|
||||
@ -1004,6 +1024,11 @@ T (ceil)(const T& x)
|
||||
return ceil(x);
|
||||
}
|
||||
|
||||
#if defined(__SYCL_DEVICE_ONLY__)
|
||||
EIGEN_ALWAYS_INLINE float ceil(float x) { return cl::sycl::ceil(x); }
|
||||
EIGEN_ALWAYS_INLINE double ceil(double x) { return cl::sycl::ceil(x); }
|
||||
#endif // defined(__SYCL_DEVICE_ONLY__)
|
||||
|
||||
#ifdef __CUDACC__
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
float ceil(const float &x) { return ::ceilf(x); }
|
||||
@ -1044,6 +1069,11 @@ T sqrt(const T &x)
|
||||
return sqrt(x);
|
||||
}
|
||||
|
||||
#if defined(__SYCL_DEVICE_ONLY__)
|
||||
EIGEN_ALWAYS_INLINE float sqrt(float x) { return cl::sycl::sqrt(x); }
|
||||
EIGEN_ALWAYS_INLINE double sqrt(double x) { return cl::sycl::sqrt(x); }
|
||||
#endif // defined(__SYCL_DEVICE_ONLY__)
|
||||
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
T log(const T &x) {
|
||||
@ -1051,6 +1081,12 @@ T log(const T &x) {
|
||||
return log(x);
|
||||
}
|
||||
|
||||
#if defined(__SYCL_DEVICE_ONLY__)
|
||||
EIGEN_ALWAYS_INLINE float log(float x) { return cl::sycl::log(x); }
|
||||
EIGEN_ALWAYS_INLINE double log(double x) { return cl::sycl::log(x); }
|
||||
#endif // defined(__SYCL_DEVICE_ONLY__)
|
||||
|
||||
|
||||
#ifdef __CUDACC__
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
float log(const float &x) { return ::logf(x); }
|
||||
@ -1066,6 +1102,11 @@ typename NumTraits<T>::Real abs(const T &x) {
|
||||
return abs(x);
|
||||
}
|
||||
|
||||
#if defined(__SYCL_DEVICE_ONLY__)
|
||||
EIGEN_ALWAYS_INLINE float abs(float x) { return cl::sycl::fabs(x); }
|
||||
EIGEN_ALWAYS_INLINE double abs(double x) { return cl::sycl::fabs(x); }
|
||||
#endif // defined(__SYCL_DEVICE_ONLY__)
|
||||
|
||||
#ifdef __CUDACC__
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
float abs(const float &x) { return ::fabsf(x); }
|
||||
@ -1091,6 +1132,11 @@ T exp(const T &x) {
|
||||
return exp(x);
|
||||
}
|
||||
|
||||
#if defined(__SYCL_DEVICE_ONLY__)
|
||||
EIGEN_ALWAYS_INLINE float exp(float x) { return cl::sycl::exp(x); }
|
||||
EIGEN_ALWAYS_INLINE double exp(double x) { return cl::sycl::exp(x); }
|
||||
#endif // defined(__SYCL_DEVICE_ONLY__)
|
||||
|
||||
#ifdef __CUDACC__
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
float exp(const float &x) { return ::expf(x); }
|
||||
@ -1106,6 +1152,11 @@ T cos(const T &x) {
|
||||
return cos(x);
|
||||
}
|
||||
|
||||
#if defined(__SYCL_DEVICE_ONLY__)
|
||||
EIGEN_ALWAYS_INLINE float cos(float x) { return cl::sycl::cos(x); }
|
||||
EIGEN_ALWAYS_INLINE double cos(double x) { return cl::sycl::cos(x); }
|
||||
#endif // defined(__SYCL_DEVICE_ONLY__)
|
||||
|
||||
#ifdef __CUDACC__
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
float cos(const float &x) { return ::cosf(x); }
|
||||
@ -1121,6 +1172,11 @@ T sin(const T &x) {
|
||||
return sin(x);
|
||||
}
|
||||
|
||||
#if defined(__SYCL_DEVICE_ONLY__)
|
||||
EIGEN_ALWAYS_INLINE float sin(float x) { return cl::sycl::sin(x); }
|
||||
EIGEN_ALWAYS_INLINE double sin(double x) { return cl::sycl::sin(x); }
|
||||
#endif // defined(__SYCL_DEVICE_ONLY__)
|
||||
|
||||
#ifdef __CUDACC__
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
float sin(const float &x) { return ::sinf(x); }
|
||||
@ -1136,6 +1192,11 @@ T tan(const T &x) {
|
||||
return tan(x);
|
||||
}
|
||||
|
||||
#if defined(__SYCL_DEVICE_ONLY__)
|
||||
EIGEN_ALWAYS_INLINE float tan(float x) { return cl::sycl::tan(x); }
|
||||
EIGEN_ALWAYS_INLINE double tan(double x) { return cl::sycl::tan(x); }
|
||||
#endif // defined(__SYCL_DEVICE_ONLY__)
|
||||
|
||||
#ifdef __CUDACC__
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
float tan(const float &x) { return ::tanf(x); }
|
||||
@ -1151,6 +1212,11 @@ T acos(const T &x) {
|
||||
return acos(x);
|
||||
}
|
||||
|
||||
#if defined(__SYCL_DEVICE_ONLY__)
|
||||
EIGEN_ALWAYS_INLINE float acos(float x) { return cl::sycl::acos(x); }
|
||||
EIGEN_ALWAYS_INLINE double acos(double x) { return cl::sycl::acos(x); }
|
||||
#endif // defined(__SYCL_DEVICE_ONLY__)
|
||||
|
||||
#ifdef __CUDACC__
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
float acos(const float &x) { return ::acosf(x); }
|
||||
@ -1166,6 +1232,11 @@ T asin(const T &x) {
|
||||
return asin(x);
|
||||
}
|
||||
|
||||
#if defined(__SYCL_DEVICE_ONLY__)
|
||||
EIGEN_ALWAYS_INLINE float asin(float x) { return cl::sycl::asin(x); }
|
||||
EIGEN_ALWAYS_INLINE double asin(double x) { return cl::sycl::asin(x); }
|
||||
#endif // defined(__SYCL_DEVICE_ONLY__)
|
||||
|
||||
#ifdef __CUDACC__
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
float asin(const float &x) { return ::asinf(x); }
|
||||
@ -1181,6 +1252,11 @@ T atan(const T &x) {
|
||||
return atan(x);
|
||||
}
|
||||
|
||||
#if defined(__SYCL_DEVICE_ONLY__)
|
||||
EIGEN_ALWAYS_INLINE float atan(float x) { return cl::sycl::atan(x); }
|
||||
EIGEN_ALWAYS_INLINE double atan(double x) { return cl::sycl::atan(x); }
|
||||
#endif // defined(__SYCL_DEVICE_ONLY__)
|
||||
|
||||
#ifdef __CUDACC__
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
float atan(const float &x) { return ::atanf(x); }
|
||||
@ -1197,6 +1273,11 @@ T cosh(const T &x) {
|
||||
return cosh(x);
|
||||
}
|
||||
|
||||
#if defined(__SYCL_DEVICE_ONLY__)
|
||||
EIGEN_ALWAYS_INLINE float cosh(float x) { return cl::sycl::cosh(x); }
|
||||
EIGEN_ALWAYS_INLINE double cosh(double x) { return cl::sycl::cosh(x); }
|
||||
#endif // defined(__SYCL_DEVICE_ONLY__)
|
||||
|
||||
#ifdef __CUDACC__
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
float cosh(const float &x) { return ::coshf(x); }
|
||||
@ -1212,6 +1293,11 @@ T sinh(const T &x) {
|
||||
return sinh(x);
|
||||
}
|
||||
|
||||
#if defined(__SYCL_DEVICE_ONLY__)
|
||||
EIGEN_ALWAYS_INLINE float sinh(float x) { return cl::sycl::sinh(x); }
|
||||
EIGEN_ALWAYS_INLINE double sinh(double x) { return cl::sycl::sinh(x); }
|
||||
#endif // defined(__SYCL_DEVICE_ONLY__)
|
||||
|
||||
#ifdef __CUDACC__
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
float sinh(const float &x) { return ::sinhf(x); }
|
||||
@ -1227,7 +1313,10 @@ T tanh(const T &x) {
|
||||
return tanh(x);
|
||||
}
|
||||
|
||||
#if (!defined(__CUDACC__)) && EIGEN_FAST_MATH
|
||||
#if defined(__SYCL_DEVICE_ONLY__)
|
||||
EIGEN_ALWAYS_INLINE float tanh(float x) { return cl::sycl::tanh(x); }
|
||||
EIGEN_ALWAYS_INLINE double tanh(double x) { return cl::sycl::tanh(x); }
|
||||
#elif (!defined(__CUDACC__)) && EIGEN_FAST_MATH
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
float tanh(float x) { return internal::generic_fast_tanh_float(x); }
|
||||
#endif
|
||||
@ -1247,6 +1336,11 @@ T fmod(const T& a, const T& b) {
|
||||
return fmod(a, b);
|
||||
}
|
||||
|
||||
#if defined(__SYCL_DEVICE_ONLY__)
|
||||
EIGEN_ALWAYS_INLINE float fmod(float x, float y) { return cl::sycl::fmod(x, y); }
|
||||
EIGEN_ALWAYS_INLINE double fmod(double x, double y) { return cl::sycl::fmod(x, y); }
|
||||
#endif // defined(__SYCL_DEVICE_ONLY__)
|
||||
|
||||
#ifdef __CUDACC__
|
||||
template <>
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
@ -1389,13 +1483,13 @@ template<> struct random_impl<bool>
|
||||
template<> struct scalar_fuzzy_impl<bool>
|
||||
{
|
||||
typedef bool RealScalar;
|
||||
|
||||
|
||||
template<typename OtherScalar> EIGEN_DEVICE_FUNC
|
||||
static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&)
|
||||
{
|
||||
return !x;
|
||||
}
|
||||
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline bool isApprox(bool x, bool y, bool)
|
||||
{
|
||||
@ -1407,10 +1501,10 @@ template<> struct scalar_fuzzy_impl<bool>
|
||||
{
|
||||
return (!x) || y;
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
@ -13,7 +13,7 @@
|
||||
|
||||
#include "../../../Eigen/Core"
|
||||
|
||||
#ifdef EIGEN_USE_SYCL
|
||||
#if defined(EIGEN_USE_SYCL)
|
||||
#undef min
|
||||
#undef max
|
||||
#undef isnan
|
||||
|
@ -147,6 +147,7 @@ if(EIGEN_TEST_CXX11)
|
||||
ei_add_test_sycl(cxx11_tensor_device_sycl "-std=c++11")
|
||||
ei_add_test_sycl(cxx11_tensor_reduction_sycl "-std=c++11")
|
||||
ei_add_test_sycl(cxx11_tensor_morphing_sycl "-std=c++11")
|
||||
ei_add_test_sycl(cxx11_tensor_builtins_sycl "-std=c++11")
|
||||
endif(EIGEN_TEST_SYCL)
|
||||
# It should be safe to always run these tests as there is some fallback code for
|
||||
# older compiler that don't support cxx11.
|
||||
|
83
unsupported/test/cxx11_tensor_builtins_sycl.cpp
Normal file
83
unsupported/test/cxx11_tensor_builtins_sycl.cpp
Normal file
@ -0,0 +1,83 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2016
|
||||
// Mehdi Goli Codeplay Software Ltd.
|
||||
// Ralph Potter Codeplay Software Ltd.
|
||||
// Luke Iwanski Codeplay Software Ltd.
|
||||
// Contact: <eigen@codeplay.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#define EIGEN_TEST_NO_LONGDOUBLE
|
||||
#define EIGEN_TEST_NO_COMPLEX
|
||||
#define EIGEN_TEST_FUNC cxx11_tensor_builtins_sycl
|
||||
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
|
||||
#define EIGEN_USE_SYCL
|
||||
|
||||
#include "main.h"
|
||||
#include <unsupported/Eigen/CXX11/Tensor>
|
||||
|
||||
using Eigen::array;
|
||||
using Eigen::SyclDevice;
|
||||
using Eigen::Tensor;
|
||||
using Eigen::TensorMap;
|
||||
|
||||
namespace std
|
||||
{
|
||||
template<typename T> T rsqrt(T x) { return 1/std::sqrt(x); }
|
||||
template<typename T> T square(T x) { return x*x; }
|
||||
template<typename T> T cube(T x) { return x*x*x; }
|
||||
template<typename T> T inverse(T x) { return 1/x; }
|
||||
}
|
||||
|
||||
#define TEST_UNARY_BUILTINS_FOR_SCALAR(FUNC, SCALAR) \
|
||||
{ \
|
||||
Tensor<SCALAR, 3> in1(tensorRange); \
|
||||
Tensor<SCALAR, 3> out1(tensorRange); \
|
||||
in1 = in1.random(); \
|
||||
SCALAR* gpu_data1 = static_cast<SCALAR*>(sycl_device.allocate(in1.size()*sizeof(SCALAR))); \
|
||||
TensorMap<Tensor<SCALAR, 3>> gpu1(gpu_data1, tensorRange); \
|
||||
sycl_device.memcpyHostToDevice(gpu_data1, in1.data(),(in1.size())*sizeof(SCALAR)); \
|
||||
gpu1.device(sycl_device) = gpu1.FUNC(); \
|
||||
sycl_device.memcpyDeviceToHost(out1.data(), gpu_data1,(out1.size())*sizeof(SCALAR)); \
|
||||
for (int i = 0; i < in1.size(); ++i) { \
|
||||
VERIFY_IS_APPROX(out1(i), std::FUNC(in1(i))); \
|
||||
} \
|
||||
sycl_device.deallocate(gpu_data1); \
|
||||
}
|
||||
|
||||
#define TEST_UNARY_BUILTINS(SCALAR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(abs, SCALAR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(sqrt, SCALAR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(rsqrt, SCALAR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(square, SCALAR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(cube, SCALAR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(inverse, SCALAR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(tanh, SCALAR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(exp, SCALAR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(log, SCALAR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(abs, SCALAR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(ceil, SCALAR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(floor, SCALAR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(round, SCALAR) \
|
||||
TEST_UNARY_BUILTINS_FOR_SCALAR(log1p, SCALAR)
|
||||
|
||||
static void test_builtin_unary_sycl(const Eigen::SyclDevice &sycl_device){
|
||||
int sizeDim1 = 100;
|
||||
int sizeDim2 = 100;
|
||||
int sizeDim3 = 100;
|
||||
array<int, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}};
|
||||
|
||||
TEST_UNARY_BUILTINS(float)
|
||||
TEST_UNARY_BUILTINS(double)
|
||||
}
|
||||
|
||||
|
||||
void test_cxx11_tensor_builtins_sycl() {
|
||||
cl::sycl::gpu_selector s;
|
||||
Eigen::SyclDevice sycl_device(s);
|
||||
CALL_SUBTEST(test_builtin_unary_sycl(sycl_device));
|
||||
}
|
Loading…
Reference in New Issue
Block a user