diff --git a/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h b/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h index a50680133..31a43cb56 100644 --- a/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +++ b/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h @@ -139,11 +139,7 @@ struct traits > * \include BiCGSTAB_simple.cpp * * By default the iterations start with x=0 as an initial guess of the solution. - * One can control the start using the solveWithGuess() method. Here is a step by - * step execution example starting with a random guess and printing the evolution - * of the estimated error: - * \include BiCGSTAB_step_by_step.cpp - * Note that such a step by step execution is slightly slower. + * One can control the start using the solveWithGuess() method. * * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner */ diff --git a/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h b/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h index 4857dd9e9..1e819fc9f 100644 --- a/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +++ b/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h @@ -137,20 +137,7 @@ struct traits > * \endcode * * By default the iterations start with x=0 as an initial guess of the solution. - * One can control the start using the solveWithGuess() method. Here is a step by - * step execution example starting with a random guess and printing the evolution - * of the estimated error: - * * \code - * x = VectorXd::Random(n); - * cg.setMaxIterations(1); - * int i = 0; - * do { - * x = cg.solveWithGuess(b,x); - * std::cout << i << " : " << cg.error() << std::endl; - * ++i; - * } while (cg.info()!=Success && i<100); - * \endcode - * Note that such a step by step excution is slightly slower. + * One can control the start using the solveWithGuess() method. * * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner */ diff --git a/unsupported/Eigen/src/IterativeSolvers/GMRES.h b/unsupported/Eigen/src/IterativeSolvers/GMRES.h index 39610c074..30f82b52e 100644 --- a/unsupported/Eigen/src/IterativeSolvers/GMRES.h +++ b/unsupported/Eigen/src/IterativeSolvers/GMRES.h @@ -250,21 +250,8 @@ struct traits > * \endcode * * By default the iterations start with x=0 as an initial guess of the solution. - * One can control the start using the solveWithGuess() method. Here is a step by - * step execution example starting with a random guess and printing the evolution - * of the estimated error: - * * \code - * x = VectorXd::Random(n); - * solver.setMaxIterations(1); - * int i = 0; - * do { - * x = solver.solveWithGuess(b,x); - * std::cout << i << " : " << solver.error() << std::endl; - * ++i; - * } while (solver.info()!=Success && i<100); - * \endcode - * Note that such a step by step excution is slightly slower. - * + * One can control the start using the solveWithGuess() method. + * * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner */ template< typename _MatrixType, typename _Preconditioner> diff --git a/unsupported/Eigen/src/IterativeSolvers/MINRES.h b/unsupported/Eigen/src/IterativeSolvers/MINRES.h index 93a83e5b7..c4d969a72 100644 --- a/unsupported/Eigen/src/IterativeSolvers/MINRES.h +++ b/unsupported/Eigen/src/IterativeSolvers/MINRES.h @@ -189,20 +189,7 @@ namespace Eigen { * \endcode * * By default the iterations start with x=0 as an initial guess of the solution. - * One can control the start using the solveWithGuess() method. Here is a step by - * step execution example starting with a random guess and printing the evolution - * of the estimated error: - * * \code - * x = VectorXd::Random(n); - * mr.setMaxIterations(1); - * int i = 0; - * do { - * x = mr.solveWithGuess(b,x); - * std::cout << i << " : " << mr.error() << std::endl; - * ++i; - * } while (mr.info()!=Success && i<100); - * \endcode - * Note that such a step by step excution is slightly slower. + * One can control the start using the solveWithGuess() method. * * \sa class ConjugateGradient, BiCGSTAB, SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner */