* LU decomposition, supporting all rectangular matrices, with full

pivoting for better numerical stability. For now the only application is
determinant.
* New determinant unit-test.
* Disable most of Swap.h for now as it makes LU fail (mysterious).
Anyway Swap needs a big overhaul as proposed on IRC.
* Remnants of old class Inverse removed.
* Some warnings fixed.
This commit is contained in:
Benoit Jacob 2008-08-04 04:45:59 +00:00
parent f81dfcf00b
commit c2f8ecf466
11 changed files with 237 additions and 50 deletions

View File

@ -1,5 +1,5 @@
#ifndef EIGEN_LU_H
#define EIGEN_LU_H
#ifndef EIGEN_LU_MODULE_H
#define EIGEN_LU_MODULE_H
#include "Core"
@ -16,9 +16,10 @@ namespace Eigen {
* \endcode
*/
#include "src/LU/LU.h"
#include "src/LU/Determinant.h"
#include "src/LU/Inverse.h"
} // namespace Eigen
#endif // EIGEN_LU_H
#endif // EIGEN_LU_MODULE_H

View File

@ -139,7 +139,7 @@ template<int Offset,typename PacketType>
struct ei_palign_impl
{
// by default data are aligned, so there is nothing to be done :)
inline static void run(PacketType& first, const PacketType& second) {}
inline static void run(PacketType&, const PacketType&) {}
};
/** \internal update \a first using the concatenation of the \a Offset last elements

View File

@ -526,6 +526,7 @@ template<typename Derived> class MatrixBase
/////////// LU module ///////////
const LU<EvalType> lu() const;
const EvalType inverse() const;
void computeInverse(EvalType *result) const;
Scalar determinant() const;

View File

@ -42,7 +42,9 @@ template<typename OtherDerived>
void MatrixBase<Derived>::swap(const MatrixBase<OtherDerived>& other)
{
MatrixBase<OtherDerived> *_other = const_cast<MatrixBase<OtherDerived>*>(&other);
if(SizeAtCompileTime == Dynamic)
// disable that path: it makes LU decomposition fail ! I can't see the bug though.
if(false /*SizeAtCompileTime == Dynamic*/)
{
ei_swap_selector<Derived,OtherDerived>::run(derived(),other.const_cast_derived());
}

View File

@ -95,7 +95,7 @@ void ei_cache_friendly_product(
bool _rhsRowMajor, const Scalar* _rhs, int _rhsStride,
bool resRowMajor, Scalar* res, int resStride);
template<typename ExpressionType, bool CheckExistence = true> class Inverse;
template<typename MatrixType> class LU;
template<typename MatrixType> class QR;
template<typename MatrixType> class Cholesky;
template<typename MatrixType> class CholeskyWithoutSquareRoot;

View File

@ -135,7 +135,6 @@ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; \
typedef typename Base::PacketScalar PacketScalar; \
typedef typename Eigen::ei_nested<Derived>::type Nested; \
typedef typename Eigen::ei_eval<Derived>::type Eval; \
typedef typename Eigen::Inverse<Eval> InverseType; \
enum { RowsAtCompileTime = Eigen::ei_traits<Derived>::RowsAtCompileTime, \
ColsAtCompileTime = Eigen::ei_traits<Derived>::ColsAtCompileTime, \
MaxRowsAtCompileTime = Eigen::ei_traits<Derived>::MaxRowsAtCompileTime, \

View File

@ -63,7 +63,7 @@ const typename Derived::Scalar ei_bruteforce_det(const MatrixBase<Derived>& m)
- ei_bruteforce_det4_helper(m,1,3,0,2)
+ ei_bruteforce_det4_helper(m,2,3,0,1);
default:
assert(false);
ei_internal_assert(false);
}
}
@ -85,7 +85,7 @@ typename ei_traits<Derived>::Scalar MatrixBase<Derived>::determinant() const
return derived().diagonal().redux(ei_scalar_product_op<Scalar>());
}
else if(rows() <= 4) return ei_bruteforce_det(derived());
else assert(false); // unimplemented for now
else return lu().determinant();
}
#endif // EIGEN_DETERMINANT_H

188
Eigen/src/LU/LU.h Normal file
View File

@ -0,0 +1,188 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_LU_H
#define EIGEN_LU_H
/** \ingroup LU_Module
*
* \class LU
*
* \brief LU decomposition of a matrix with complete pivoting, and associated features
*
* \param MatrixType the type of the matrix of which we are computing the LU decomposition
*
* This class performs a LU decomposition of any matrix, with complete pivoting: the matrix A
* is decomposed as A = PLUQ where L is unit-lower-triangular, U is upper-triangular, and P and Q
* are permutation matrices.
*
* This decomposition provides the generic approach to solving systems of linear equations, computing
* the rank, invertibility, inverse, and determinant. However for the case when invertibility is
* assumed, we have a specialized variant (see MatrixBase::inverse()) achieving better performance.
*
* \sa MatrixBase::lu(), MatrixBase::determinant(), MatrixBase::rank(), MatrixBase::kernelDim(),
* MatrixBase::kernelBasis(), MatrixBase::solve(), MatrixBase::isInvertible(),
* MatrixBase::inverse(), MatrixBase::computeInverse()
*/
template<typename MatrixType> class LU
{
public:
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef Matrix<int, MatrixType::ColsAtCompileTime, 1> IntRowVectorType;
typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
LU(const MatrixType& matrix);
const MatrixType& matrixLU() const
{
return m_lu;
}
const Part<MatrixType, UnitLower> matrixL() const
{
return m_lu;
}
const Part<MatrixType, Upper> matrixU() const
{
return m_lu;
}
const IntColVectorType& permutationP() const
{
return m_p;
}
const IntRowVectorType& permutationQ() const
{
return m_q;
}
template<typename OtherDerived>
typename ProductReturnType<Transpose<MatrixType>, OtherDerived>::Type::Eval
solve(const MatrixBase<MatrixType> &b) const;
/**
* This method returns the determinant of the matrix of which
* *this is the LU decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the LU decomposition has already been computed.
*
* Warning: a determinant can be very big or small, so for matrices
* of large dimension (like a 50-by-50 matrix) there can be a risk of
* overflow/underflow.
*/
typename ei_traits<MatrixType>::Scalar determinant() const;
protected:
MatrixType m_lu;
IntColVectorType m_p;
IntRowVectorType m_q;
int m_det_pq;
Scalar m_biggest_eigenvalue_of_u;
int m_dimension_of_kernel;
};
template<typename MatrixType>
LU<MatrixType>::LU(const MatrixType& matrix)
: m_lu(matrix),
m_p(matrix.rows()),
m_q(matrix.cols())
{
const int size = matrix.diagonal().size();
const int rows = matrix.rows();
const int cols = matrix.cols();
IntColVectorType rows_transpositions(matrix.rows());
IntRowVectorType cols_transpositions(matrix.cols());
int number_of_transpositions = 0;
for(int k = 0; k < size; k++)
{
int row_of_biggest, col_of_biggest;
const Scalar biggest = m_lu.corner(Eigen::BottomRight, rows-k, cols-k)
.cwise().abs()
.maxCoeff(&row_of_biggest, &col_of_biggest);
row_of_biggest += k;
col_of_biggest += k;
rows_transpositions.coeffRef(k) = row_of_biggest;
cols_transpositions.coeffRef(k) = col_of_biggest;
if(k != row_of_biggest) {
m_lu.row(k).swap(m_lu.row(row_of_biggest));
number_of_transpositions++;
}
if(k != col_of_biggest) {
m_lu.col(k).swap(m_lu.col(col_of_biggest));
number_of_transpositions++;
}
const Scalar lu_k_k = m_lu.coeff(k,k);
if(ei_isMuchSmallerThan(lu_k_k, biggest)) continue;
if(k<rows-1)
m_lu.col(k).end(rows-k-1) /= lu_k_k;
if(k<size-1)
m_lu.corner(BottomRight, rows-k-1, cols-k-1)
-= m_lu.col(k).end(rows-k-1) * m_lu.row(k).end(cols-k-1);
}
for(int k = 0; k < matrix.rows(); k++) m_p.coeffRef(k) = k;
for(int k = size-1; k >= 0; k--)
std::swap(m_p.coeffRef(k), m_p.coeffRef(rows_transpositions.coeff(k)));
for(int k = 0; k < matrix.cols(); k++) m_q.coeffRef(k) = k;
for(int k = 0; k < size; k++)
std::swap(m_q.coeffRef(k), m_q.coeffRef(cols_transpositions.coeff(k)));
m_det_pq = (number_of_transpositions%2) ? -1 : 1;
int index_of_biggest;
m_lu.diagonal().cwise().abs().maxCoeff(&index_of_biggest);
m_biggest_eigenvalue_of_u = m_lu.diagonal().coeff(index_of_biggest);
m_dimension_of_kernel = 0;
for(int k = 0; k < size; k++)
m_dimension_of_kernel += ei_isMuchSmallerThan(m_lu.diagonal().coeff(k), m_biggest_eigenvalue_of_u);
}
template<typename MatrixType>
typename ei_traits<MatrixType>::Scalar LU<MatrixType>::determinant() const
{
Scalar res = m_det_pq;
for(int k = 0; k < m_lu.diagonal().size(); k++) res *= m_lu.diagonal().coeff(k);
return res;
}
/** \return the LU decomposition of \c *this.
*
* \sa class LU
*/
template<typename Derived>
const LU<typename MatrixBase<Derived>::EvalType>
MatrixBase<Derived>::lu() const
{
return eval();
}
#endif // EIGEN_LU_H

View File

@ -171,7 +171,7 @@ template<typename Derived>
const QR<typename MatrixBase<Derived>::EvalType>
MatrixBase<Derived>::qr() const
{
return QR<typename ei_eval<Derived>::type>(derived());
return eval();
}

View File

@ -2,7 +2,7 @@ IF(BUILD_TESTS)
IF(CMAKE_COMPILER_IS_GNUCXX)
IF(CMAKE_SYSTEM_NAME MATCHES Linux)
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O1 -g1")
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g2")
SET(CMAKE_CXX_FLAGS_RELWITHDEBINFO "${CMAKE_CXX_FLAGS_RELWITHDEBINFO} -O2 -g2")
SET(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -fno-inline-functions")
SET(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -O0 -g2")
@ -95,7 +95,7 @@ EI_ADD_TEST(map)
EI_ADD_TEST(array)
EI_ADD_TEST(triangular)
EI_ADD_TEST(cholesky)
# EI_ADD_TEST(determinant)
EI_ADD_TEST(determinant)
EI_ADD_TEST(inverse)
EI_ADD_TEST(qr)
EI_ADD_TEST(eigensolver)

View File

@ -25,54 +25,50 @@
#include "main.h"
#include <Eigen/LU>
template<typename MatrixType> void nullDeterminant(const MatrixType& m)
template<typename MatrixType> void determinant(const MatrixType& m)
{
/* this test covers the following files:
Determinant.h
*/
int rows = m.rows();
int cols = m.cols();
int size = m.rows();
MatrixType m1(size, size), m2(size, size);
m1.setRandom();
m2.setRandom();
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> SquareMatrixType;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
MatrixType dinv(rows, cols), dnotinv(rows, cols);
dinv.col(0).setOnes();
dinv.block(0,1, rows, cols-2).setRandom();
dnotinv.col(0).setOnes();
dnotinv.block(0,1, rows, cols-2).setRandom();
dnotinv.col(cols-1).setOnes();
for (int i=0 ; i<rows ; ++i)
{
dnotinv.row(i).block(0,1,1,cols-2) = ei_random<Scalar>(99.999999,100.00000001)*dnotinv.row(i).block(0,1,1,cols-2).normalized();
dnotinv(i,cols-1) = dnotinv.row(i).block(0,1,1,cols-2).norm2();
dinv(i,cols-1) = dinv.row(i).block(0,1,1,cols-2).norm2();
}
SquareMatrixType invertibleCovarianceMatrix = dinv.transpose() * dinv;
SquareMatrixType notInvertibleCovarianceMatrix = dnotinv.transpose() * dnotinv;
std::cout << notInvertibleCovarianceMatrix << "\n" << notInvertibleCovarianceMatrix.determinant() << "\n";
VERIFY_IS_MUCH_SMALLER_THAN(notInvertibleCovarianceMatrix.determinant(),
notInvertibleCovarianceMatrix.cwise().abs().maxCoeff());
VERIFY(invertibleCovarianceMatrix.inverse().exists());
VERIFY(!notInvertibleCovarianceMatrix.inverse().exists());
Scalar x = ei_random<Scalar>();
VERIFY(ei_isApprox(MatrixType::Identity(size, size).determinant(), Scalar(1)));
VERIFY(ei_isApprox((m1*m2).determinant(), m1.determinant() * m2.determinant()));
if(size==1) return;
int i = ei_random<int>(0, size-1);
int j;
do {
j = ei_random<int>(0, size-1);
} while(j==i);
m2 = m1;
m2.row(i).swap(m2.row(j));
VERIFY(ei_isApprox(m2.determinant(), -m1.determinant()));
m2 = m1;
m2.col(i).swap(m2.col(j));
VERIFY(ei_isApprox(m2.determinant(), -m1.determinant()));
VERIFY(ei_isApprox(m2.determinant(), m2.transpose().determinant()));
VERIFY(ei_isApprox(ei_conj(m2.determinant()), m2.adjoint().determinant()));
m2 = m1;
m2.row(i) += x*m2.row(j);
VERIFY(ei_isApprox(m2.determinant(), m1.determinant()));
m2 = m1;
m2.row(i) *= x;
VERIFY(ei_isApprox(m2.determinant(), m1.determinant() * x));
}
void test_determinant()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST( nullDeterminant(Matrix<float, 30, 3>()) );
CALL_SUBTEST( nullDeterminant(Matrix<double, 30, 3>()) );
CALL_SUBTEST( nullDeterminant(Matrix<float, 20, 4>()) );
CALL_SUBTEST( nullDeterminant(Matrix<double, 20, 4>()) );
// CALL_SUBTEST( nullDeterminant(MatrixXd(20,4));
CALL_SUBTEST( determinant(Matrix<float, 1, 1>()) );
CALL_SUBTEST( determinant(Matrix<double, 2, 2>()) );
CALL_SUBTEST( determinant(Matrix<double, 3, 3>()) );
CALL_SUBTEST( determinant(Matrix<double, 4, 4>()) );
CALL_SUBTEST( determinant(Matrix<std::complex<double>, 10, 10>()) );
CALL_SUBTEST( determinant(MatrixXd(20, 20)) );
}
}