mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-03-31 19:00:35 +08:00
* LU decomposition, supporting all rectangular matrices, with full
pivoting for better numerical stability. For now the only application is determinant. * New determinant unit-test. * Disable most of Swap.h for now as it makes LU fail (mysterious). Anyway Swap needs a big overhaul as proposed on IRC. * Remnants of old class Inverse removed. * Some warnings fixed.
This commit is contained in:
parent
f81dfcf00b
commit
c2f8ecf466
7
Eigen/LU
7
Eigen/LU
@ -1,5 +1,5 @@
|
||||
#ifndef EIGEN_LU_H
|
||||
#define EIGEN_LU_H
|
||||
#ifndef EIGEN_LU_MODULE_H
|
||||
#define EIGEN_LU_MODULE_H
|
||||
|
||||
#include "Core"
|
||||
|
||||
@ -16,9 +16,10 @@ namespace Eigen {
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/LU/LU.h"
|
||||
#include "src/LU/Determinant.h"
|
||||
#include "src/LU/Inverse.h"
|
||||
|
||||
} // namespace Eigen
|
||||
|
||||
#endif // EIGEN_LU_H
|
||||
#endif // EIGEN_LU_MODULE_H
|
||||
|
@ -139,7 +139,7 @@ template<int Offset,typename PacketType>
|
||||
struct ei_palign_impl
|
||||
{
|
||||
// by default data are aligned, so there is nothing to be done :)
|
||||
inline static void run(PacketType& first, const PacketType& second) {}
|
||||
inline static void run(PacketType&, const PacketType&) {}
|
||||
};
|
||||
|
||||
/** \internal update \a first using the concatenation of the \a Offset last elements
|
||||
|
@ -526,6 +526,7 @@ template<typename Derived> class MatrixBase
|
||||
|
||||
/////////// LU module ///////////
|
||||
|
||||
const LU<EvalType> lu() const;
|
||||
const EvalType inverse() const;
|
||||
void computeInverse(EvalType *result) const;
|
||||
Scalar determinant() const;
|
||||
|
@ -42,7 +42,9 @@ template<typename OtherDerived>
|
||||
void MatrixBase<Derived>::swap(const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
MatrixBase<OtherDerived> *_other = const_cast<MatrixBase<OtherDerived>*>(&other);
|
||||
if(SizeAtCompileTime == Dynamic)
|
||||
|
||||
// disable that path: it makes LU decomposition fail ! I can't see the bug though.
|
||||
if(false /*SizeAtCompileTime == Dynamic*/)
|
||||
{
|
||||
ei_swap_selector<Derived,OtherDerived>::run(derived(),other.const_cast_derived());
|
||||
}
|
||||
|
@ -95,7 +95,7 @@ void ei_cache_friendly_product(
|
||||
bool _rhsRowMajor, const Scalar* _rhs, int _rhsStride,
|
||||
bool resRowMajor, Scalar* res, int resStride);
|
||||
|
||||
template<typename ExpressionType, bool CheckExistence = true> class Inverse;
|
||||
template<typename MatrixType> class LU;
|
||||
template<typename MatrixType> class QR;
|
||||
template<typename MatrixType> class Cholesky;
|
||||
template<typename MatrixType> class CholeskyWithoutSquareRoot;
|
||||
|
@ -135,7 +135,6 @@ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; \
|
||||
typedef typename Base::PacketScalar PacketScalar; \
|
||||
typedef typename Eigen::ei_nested<Derived>::type Nested; \
|
||||
typedef typename Eigen::ei_eval<Derived>::type Eval; \
|
||||
typedef typename Eigen::Inverse<Eval> InverseType; \
|
||||
enum { RowsAtCompileTime = Eigen::ei_traits<Derived>::RowsAtCompileTime, \
|
||||
ColsAtCompileTime = Eigen::ei_traits<Derived>::ColsAtCompileTime, \
|
||||
MaxRowsAtCompileTime = Eigen::ei_traits<Derived>::MaxRowsAtCompileTime, \
|
||||
|
@ -63,7 +63,7 @@ const typename Derived::Scalar ei_bruteforce_det(const MatrixBase<Derived>& m)
|
||||
- ei_bruteforce_det4_helper(m,1,3,0,2)
|
||||
+ ei_bruteforce_det4_helper(m,2,3,0,1);
|
||||
default:
|
||||
assert(false);
|
||||
ei_internal_assert(false);
|
||||
}
|
||||
}
|
||||
|
||||
@ -85,7 +85,7 @@ typename ei_traits<Derived>::Scalar MatrixBase<Derived>::determinant() const
|
||||
return derived().diagonal().redux(ei_scalar_product_op<Scalar>());
|
||||
}
|
||||
else if(rows() <= 4) return ei_bruteforce_det(derived());
|
||||
else assert(false); // unimplemented for now
|
||||
else return lu().determinant();
|
||||
}
|
||||
|
||||
#endif // EIGEN_DETERMINANT_H
|
||||
|
188
Eigen/src/LU/LU.h
Normal file
188
Eigen/src/LU/LU.h
Normal file
@ -0,0 +1,188 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_LU_H
|
||||
#define EIGEN_LU_H
|
||||
|
||||
/** \ingroup LU_Module
|
||||
*
|
||||
* \class LU
|
||||
*
|
||||
* \brief LU decomposition of a matrix with complete pivoting, and associated features
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the LU decomposition
|
||||
*
|
||||
* This class performs a LU decomposition of any matrix, with complete pivoting: the matrix A
|
||||
* is decomposed as A = PLUQ where L is unit-lower-triangular, U is upper-triangular, and P and Q
|
||||
* are permutation matrices.
|
||||
*
|
||||
* This decomposition provides the generic approach to solving systems of linear equations, computing
|
||||
* the rank, invertibility, inverse, and determinant. However for the case when invertibility is
|
||||
* assumed, we have a specialized variant (see MatrixBase::inverse()) achieving better performance.
|
||||
*
|
||||
* \sa MatrixBase::lu(), MatrixBase::determinant(), MatrixBase::rank(), MatrixBase::kernelDim(),
|
||||
* MatrixBase::kernelBasis(), MatrixBase::solve(), MatrixBase::isInvertible(),
|
||||
* MatrixBase::inverse(), MatrixBase::computeInverse()
|
||||
*/
|
||||
template<typename MatrixType> class LU
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
typedef Matrix<int, MatrixType::ColsAtCompileTime, 1> IntRowVectorType;
|
||||
typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
|
||||
|
||||
LU(const MatrixType& matrix);
|
||||
|
||||
const MatrixType& matrixLU() const
|
||||
{
|
||||
return m_lu;
|
||||
}
|
||||
|
||||
const Part<MatrixType, UnitLower> matrixL() const
|
||||
{
|
||||
return m_lu;
|
||||
}
|
||||
|
||||
const Part<MatrixType, Upper> matrixU() const
|
||||
{
|
||||
return m_lu;
|
||||
}
|
||||
|
||||
const IntColVectorType& permutationP() const
|
||||
{
|
||||
return m_p;
|
||||
}
|
||||
|
||||
const IntRowVectorType& permutationQ() const
|
||||
{
|
||||
return m_q;
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
typename ProductReturnType<Transpose<MatrixType>, OtherDerived>::Type::Eval
|
||||
solve(const MatrixBase<MatrixType> &b) const;
|
||||
|
||||
/**
|
||||
* This method returns the determinant of the matrix of which
|
||||
* *this is the LU decomposition. It has only linear complexity
|
||||
* (that is, O(n) where n is the dimension of the square matrix)
|
||||
* as the LU decomposition has already been computed.
|
||||
*
|
||||
* Warning: a determinant can be very big or small, so for matrices
|
||||
* of large dimension (like a 50-by-50 matrix) there can be a risk of
|
||||
* overflow/underflow.
|
||||
*/
|
||||
typename ei_traits<MatrixType>::Scalar determinant() const;
|
||||
|
||||
protected:
|
||||
MatrixType m_lu;
|
||||
IntColVectorType m_p;
|
||||
IntRowVectorType m_q;
|
||||
int m_det_pq;
|
||||
Scalar m_biggest_eigenvalue_of_u;
|
||||
int m_dimension_of_kernel;
|
||||
};
|
||||
|
||||
template<typename MatrixType>
|
||||
LU<MatrixType>::LU(const MatrixType& matrix)
|
||||
: m_lu(matrix),
|
||||
m_p(matrix.rows()),
|
||||
m_q(matrix.cols())
|
||||
{
|
||||
const int size = matrix.diagonal().size();
|
||||
const int rows = matrix.rows();
|
||||
const int cols = matrix.cols();
|
||||
|
||||
IntColVectorType rows_transpositions(matrix.rows());
|
||||
IntRowVectorType cols_transpositions(matrix.cols());
|
||||
int number_of_transpositions = 0;
|
||||
|
||||
for(int k = 0; k < size; k++)
|
||||
{
|
||||
int row_of_biggest, col_of_biggest;
|
||||
const Scalar biggest = m_lu.corner(Eigen::BottomRight, rows-k, cols-k)
|
||||
.cwise().abs()
|
||||
.maxCoeff(&row_of_biggest, &col_of_biggest);
|
||||
row_of_biggest += k;
|
||||
col_of_biggest += k;
|
||||
rows_transpositions.coeffRef(k) = row_of_biggest;
|
||||
cols_transpositions.coeffRef(k) = col_of_biggest;
|
||||
if(k != row_of_biggest) {
|
||||
m_lu.row(k).swap(m_lu.row(row_of_biggest));
|
||||
number_of_transpositions++;
|
||||
}
|
||||
if(k != col_of_biggest) {
|
||||
m_lu.col(k).swap(m_lu.col(col_of_biggest));
|
||||
number_of_transpositions++;
|
||||
}
|
||||
const Scalar lu_k_k = m_lu.coeff(k,k);
|
||||
if(ei_isMuchSmallerThan(lu_k_k, biggest)) continue;
|
||||
if(k<rows-1)
|
||||
m_lu.col(k).end(rows-k-1) /= lu_k_k;
|
||||
if(k<size-1)
|
||||
m_lu.corner(BottomRight, rows-k-1, cols-k-1)
|
||||
-= m_lu.col(k).end(rows-k-1) * m_lu.row(k).end(cols-k-1);
|
||||
}
|
||||
|
||||
for(int k = 0; k < matrix.rows(); k++) m_p.coeffRef(k) = k;
|
||||
for(int k = size-1; k >= 0; k--)
|
||||
std::swap(m_p.coeffRef(k), m_p.coeffRef(rows_transpositions.coeff(k)));
|
||||
|
||||
for(int k = 0; k < matrix.cols(); k++) m_q.coeffRef(k) = k;
|
||||
for(int k = 0; k < size; k++)
|
||||
std::swap(m_q.coeffRef(k), m_q.coeffRef(cols_transpositions.coeff(k)));
|
||||
|
||||
m_det_pq = (number_of_transpositions%2) ? -1 : 1;
|
||||
|
||||
int index_of_biggest;
|
||||
m_lu.diagonal().cwise().abs().maxCoeff(&index_of_biggest);
|
||||
m_biggest_eigenvalue_of_u = m_lu.diagonal().coeff(index_of_biggest);
|
||||
|
||||
m_dimension_of_kernel = 0;
|
||||
for(int k = 0; k < size; k++)
|
||||
m_dimension_of_kernel += ei_isMuchSmallerThan(m_lu.diagonal().coeff(k), m_biggest_eigenvalue_of_u);
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
typename ei_traits<MatrixType>::Scalar LU<MatrixType>::determinant() const
|
||||
{
|
||||
Scalar res = m_det_pq;
|
||||
for(int k = 0; k < m_lu.diagonal().size(); k++) res *= m_lu.diagonal().coeff(k);
|
||||
return res;
|
||||
}
|
||||
|
||||
/** \return the LU decomposition of \c *this.
|
||||
*
|
||||
* \sa class LU
|
||||
*/
|
||||
template<typename Derived>
|
||||
const LU<typename MatrixBase<Derived>::EvalType>
|
||||
MatrixBase<Derived>::lu() const
|
||||
{
|
||||
return eval();
|
||||
}
|
||||
|
||||
#endif // EIGEN_LU_H
|
@ -171,7 +171,7 @@ template<typename Derived>
|
||||
const QR<typename MatrixBase<Derived>::EvalType>
|
||||
MatrixBase<Derived>::qr() const
|
||||
{
|
||||
return QR<typename ei_eval<Derived>::type>(derived());
|
||||
return eval();
|
||||
}
|
||||
|
||||
|
||||
|
@ -2,7 +2,7 @@ IF(BUILD_TESTS)
|
||||
|
||||
IF(CMAKE_COMPILER_IS_GNUCXX)
|
||||
IF(CMAKE_SYSTEM_NAME MATCHES Linux)
|
||||
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O1 -g1")
|
||||
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g2")
|
||||
SET(CMAKE_CXX_FLAGS_RELWITHDEBINFO "${CMAKE_CXX_FLAGS_RELWITHDEBINFO} -O2 -g2")
|
||||
SET(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -fno-inline-functions")
|
||||
SET(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -O0 -g2")
|
||||
@ -95,7 +95,7 @@ EI_ADD_TEST(map)
|
||||
EI_ADD_TEST(array)
|
||||
EI_ADD_TEST(triangular)
|
||||
EI_ADD_TEST(cholesky)
|
||||
# EI_ADD_TEST(determinant)
|
||||
EI_ADD_TEST(determinant)
|
||||
EI_ADD_TEST(inverse)
|
||||
EI_ADD_TEST(qr)
|
||||
EI_ADD_TEST(eigensolver)
|
||||
|
@ -25,54 +25,50 @@
|
||||
#include "main.h"
|
||||
#include <Eigen/LU>
|
||||
|
||||
template<typename MatrixType> void nullDeterminant(const MatrixType& m)
|
||||
template<typename MatrixType> void determinant(const MatrixType& m)
|
||||
{
|
||||
/* this test covers the following files:
|
||||
Determinant.h
|
||||
*/
|
||||
int rows = m.rows();
|
||||
int cols = m.cols();
|
||||
int size = m.rows();
|
||||
|
||||
MatrixType m1(size, size), m2(size, size);
|
||||
m1.setRandom();
|
||||
m2.setRandom();
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> SquareMatrixType;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
|
||||
|
||||
MatrixType dinv(rows, cols), dnotinv(rows, cols);
|
||||
|
||||
dinv.col(0).setOnes();
|
||||
dinv.block(0,1, rows, cols-2).setRandom();
|
||||
|
||||
dnotinv.col(0).setOnes();
|
||||
dnotinv.block(0,1, rows, cols-2).setRandom();
|
||||
dnotinv.col(cols-1).setOnes();
|
||||
|
||||
for (int i=0 ; i<rows ; ++i)
|
||||
{
|
||||
dnotinv.row(i).block(0,1,1,cols-2) = ei_random<Scalar>(99.999999,100.00000001)*dnotinv.row(i).block(0,1,1,cols-2).normalized();
|
||||
dnotinv(i,cols-1) = dnotinv.row(i).block(0,1,1,cols-2).norm2();
|
||||
dinv(i,cols-1) = dinv.row(i).block(0,1,1,cols-2).norm2();
|
||||
}
|
||||
|
||||
SquareMatrixType invertibleCovarianceMatrix = dinv.transpose() * dinv;
|
||||
SquareMatrixType notInvertibleCovarianceMatrix = dnotinv.transpose() * dnotinv;
|
||||
|
||||
std::cout << notInvertibleCovarianceMatrix << "\n" << notInvertibleCovarianceMatrix.determinant() << "\n";
|
||||
|
||||
VERIFY_IS_MUCH_SMALLER_THAN(notInvertibleCovarianceMatrix.determinant(),
|
||||
notInvertibleCovarianceMatrix.cwise().abs().maxCoeff());
|
||||
|
||||
VERIFY(invertibleCovarianceMatrix.inverse().exists());
|
||||
|
||||
VERIFY(!notInvertibleCovarianceMatrix.inverse().exists());
|
||||
Scalar x = ei_random<Scalar>();
|
||||
VERIFY(ei_isApprox(MatrixType::Identity(size, size).determinant(), Scalar(1)));
|
||||
VERIFY(ei_isApprox((m1*m2).determinant(), m1.determinant() * m2.determinant()));
|
||||
if(size==1) return;
|
||||
int i = ei_random<int>(0, size-1);
|
||||
int j;
|
||||
do {
|
||||
j = ei_random<int>(0, size-1);
|
||||
} while(j==i);
|
||||
m2 = m1;
|
||||
m2.row(i).swap(m2.row(j));
|
||||
VERIFY(ei_isApprox(m2.determinant(), -m1.determinant()));
|
||||
m2 = m1;
|
||||
m2.col(i).swap(m2.col(j));
|
||||
VERIFY(ei_isApprox(m2.determinant(), -m1.determinant()));
|
||||
VERIFY(ei_isApprox(m2.determinant(), m2.transpose().determinant()));
|
||||
VERIFY(ei_isApprox(ei_conj(m2.determinant()), m2.adjoint().determinant()));
|
||||
m2 = m1;
|
||||
m2.row(i) += x*m2.row(j);
|
||||
VERIFY(ei_isApprox(m2.determinant(), m1.determinant()));
|
||||
m2 = m1;
|
||||
m2.row(i) *= x;
|
||||
VERIFY(ei_isApprox(m2.determinant(), m1.determinant() * x));
|
||||
}
|
||||
|
||||
void test_determinant()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST( nullDeterminant(Matrix<float, 30, 3>()) );
|
||||
CALL_SUBTEST( nullDeterminant(Matrix<double, 30, 3>()) );
|
||||
CALL_SUBTEST( nullDeterminant(Matrix<float, 20, 4>()) );
|
||||
CALL_SUBTEST( nullDeterminant(Matrix<double, 20, 4>()) );
|
||||
// CALL_SUBTEST( nullDeterminant(MatrixXd(20,4));
|
||||
CALL_SUBTEST( determinant(Matrix<float, 1, 1>()) );
|
||||
CALL_SUBTEST( determinant(Matrix<double, 2, 2>()) );
|
||||
CALL_SUBTEST( determinant(Matrix<double, 3, 3>()) );
|
||||
CALL_SUBTEST( determinant(Matrix<double, 4, 4>()) );
|
||||
CALL_SUBTEST( determinant(Matrix<std::complex<double>, 10, 10>()) );
|
||||
CALL_SUBTEST( determinant(MatrixXd(20, 20)) );
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user