mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-03-07 18:27:40 +08:00
Extend unit tests of sefladjoint-eigensolver
This commit is contained in:
parent
ebf8ca4fa8
commit
c2107d30ce
@ -9,9 +9,12 @@
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#include "main.h"
|
||||
#include "svd_fill.h"
|
||||
#include <limits>
|
||||
#include <Eigen/Eigenvalues>
|
||||
|
||||
|
||||
|
||||
template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
@ -31,17 +34,8 @@ template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
|
||||
MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
|
||||
MatrixType symmC = symmA;
|
||||
|
||||
// randomly nullify some rows/columns
|
||||
{
|
||||
Index count = 1;//internal::random<Index>(-cols,cols);
|
||||
for(Index k=0; k<count; ++k)
|
||||
{
|
||||
Index i = internal::random<Index>(0,cols-1);
|
||||
symmA.row(i).setZero();
|
||||
symmA.col(i).setZero();
|
||||
}
|
||||
}
|
||||
|
||||
svd_fill_random(symmA,Symmetric);
|
||||
|
||||
symmA.template triangularView<StrictlyUpper>().setZero();
|
||||
symmC.template triangularView<StrictlyUpper>().setZero();
|
||||
|
||||
|
@ -16,6 +16,8 @@
|
||||
#error a macro SVD_FOR_MIN_NORM(MatrixType) must be defined prior to including svd_common.h
|
||||
#endif
|
||||
|
||||
#include "svd_fill.h"
|
||||
|
||||
// Check that the matrix m is properly reconstructed and that the U and V factors are unitary
|
||||
// The SVD must have already been computed.
|
||||
template<typename SvdType, typename MatrixType>
|
||||
@ -257,65 +259,6 @@ void svd_test_all_computation_options(const MatrixType& m, bool full_only)
|
||||
}
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
void svd_fill_random(MatrixType &m)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
Index diagSize = (std::min)(m.rows(), m.cols());
|
||||
RealScalar s = std::numeric_limits<RealScalar>::max_exponent10/4;
|
||||
s = internal::random<RealScalar>(1,s);
|
||||
Matrix<RealScalar,Dynamic,1> d = Matrix<RealScalar,Dynamic,1>::Random(diagSize);
|
||||
for(Index k=0; k<diagSize; ++k)
|
||||
d(k) = d(k)*std::pow(RealScalar(10),internal::random<RealScalar>(-s,s));
|
||||
|
||||
bool dup = internal::random<int>(0,10) < 3;
|
||||
bool unit_uv = internal::random<int>(0,10) < (dup?7:3); // if we duplicate some diagonal entries, then increase the chance to preserve them using unitary U and V factors
|
||||
|
||||
// duplicate some singular values
|
||||
if(dup)
|
||||
{
|
||||
Index n = internal::random<Index>(0,d.size()-1);
|
||||
for(Index i=0; i<n; ++i)
|
||||
d(internal::random<Index>(0,d.size()-1)) = d(internal::random<Index>(0,d.size()-1));
|
||||
}
|
||||
|
||||
Matrix<Scalar,Dynamic,Dynamic> U(m.rows(),diagSize);
|
||||
Matrix<Scalar,Dynamic,Dynamic> VT(diagSize,m.cols());
|
||||
if(unit_uv)
|
||||
{
|
||||
// in very rare cases let's try with a pure diagonal matrix
|
||||
if(internal::random<int>(0,10) < 1)
|
||||
{
|
||||
U.setIdentity();
|
||||
VT.setIdentity();
|
||||
}
|
||||
else
|
||||
{
|
||||
createRandomPIMatrixOfRank(diagSize,U.rows(), U.cols(), U);
|
||||
createRandomPIMatrixOfRank(diagSize,VT.rows(), VT.cols(), VT);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
U.setRandom();
|
||||
VT.setRandom();
|
||||
}
|
||||
|
||||
m = U * d.asDiagonal() * VT;
|
||||
|
||||
// (partly) cancel some coeffs
|
||||
if(!(dup && unit_uv))
|
||||
{
|
||||
Matrix<Scalar,Dynamic,1> samples(7);
|
||||
samples << 0, 5.60844e-313, -5.60844e-313, 4.94e-324, -4.94e-324, -1./NumTraits<RealScalar>::highest(), 1./NumTraits<RealScalar>::highest();
|
||||
Index n = internal::random<Index>(0,m.size()-1);
|
||||
for(Index i=0; i<n; ++i)
|
||||
m(internal::random<Index>(0,m.rows()-1), internal::random<Index>(0,m.cols()-1)) = samples(internal::random<Index>(0,6));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// work around stupid msvc error when constructing at compile time an expression that involves
|
||||
// a division by zero, even if the numeric type has floating point
|
||||
|
85
test/svd_fill.h
Normal file
85
test/svd_fill.h
Normal file
@ -0,0 +1,85 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2014-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
template<typename MatrixType>
|
||||
void svd_fill_random(MatrixType &m, int Option = 0)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
Index diagSize = (std::min)(m.rows(), m.cols());
|
||||
RealScalar s = std::numeric_limits<RealScalar>::max_exponent10/4;
|
||||
s = internal::random<RealScalar>(1,s);
|
||||
Matrix<RealScalar,Dynamic,1> d = Matrix<RealScalar,Dynamic,1>::Random(diagSize);
|
||||
for(Index k=0; k<diagSize; ++k)
|
||||
d(k) = d(k)*std::pow(RealScalar(10),internal::random<RealScalar>(-s,s));
|
||||
|
||||
bool dup = internal::random<int>(0,10) < 3;
|
||||
bool unit_uv = internal::random<int>(0,10) < (dup?7:3); // if we duplicate some diagonal entries, then increase the chance to preserve them using unitary U and V factors
|
||||
|
||||
// duplicate some singular values
|
||||
if(dup)
|
||||
{
|
||||
Index n = internal::random<Index>(0,d.size()-1);
|
||||
for(Index i=0; i<n; ++i)
|
||||
d(internal::random<Index>(0,d.size()-1)) = d(internal::random<Index>(0,d.size()-1));
|
||||
}
|
||||
|
||||
Matrix<Scalar,Dynamic,Dynamic> U(m.rows(),diagSize);
|
||||
Matrix<Scalar,Dynamic,Dynamic> VT(diagSize,m.cols());
|
||||
if(unit_uv)
|
||||
{
|
||||
// in very rare cases let's try with a pure diagonal matrix
|
||||
if(internal::random<int>(0,10) < 1)
|
||||
{
|
||||
U.setIdentity();
|
||||
VT.setIdentity();
|
||||
}
|
||||
else
|
||||
{
|
||||
createRandomPIMatrixOfRank(diagSize,U.rows(), U.cols(), U);
|
||||
createRandomPIMatrixOfRank(diagSize,VT.rows(), VT.cols(), VT);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
U.setRandom();
|
||||
VT.setRandom();
|
||||
}
|
||||
|
||||
if(Option==Symmetric)
|
||||
{
|
||||
m = U * d.asDiagonal() * U.transpose();
|
||||
|
||||
// randomly nullify some rows/columns
|
||||
{
|
||||
Index count = internal::random<Index>(-1,1);
|
||||
for(Index k=0; k<count; ++k)
|
||||
{
|
||||
Index i = internal::random<Index>(0,diagSize-1);
|
||||
m.row(i).setZero();
|
||||
m.col(i).setZero();
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
m = U * d.asDiagonal() * VT;
|
||||
// (partly) cancel some coeffs
|
||||
if(!(dup && unit_uv))
|
||||
{
|
||||
Matrix<Scalar,Dynamic,1> samples(7);
|
||||
samples << 0, 5.60844e-313, -5.60844e-313, 4.94e-324, -4.94e-324, -1./NumTraits<RealScalar>::highest(), 1./NumTraits<RealScalar>::highest();
|
||||
Index n = internal::random<Index>(0,m.size()-1);
|
||||
for(Index i=0; i<n; ++i)
|
||||
m(internal::random<Index>(0,m.rows()-1), internal::random<Index>(0,m.cols()-1)) = samples(internal::random<Index>(0,6));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user