mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-03-31 19:00:35 +08:00
Fix tensor documentation.
This commit is contained in:
parent
74264c391a
commit
c079ee5e44
@ -17,13 +17,6 @@
|
||||
namespace Eigen {
|
||||
namespace internal {
|
||||
|
||||
/** \class TensorIndexPair
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor + Index Pair class.
|
||||
*
|
||||
*
|
||||
*/
|
||||
template <typename XprType>
|
||||
struct traits<TensorIndexPairOp<XprType>> : public traits<XprType> {
|
||||
typedef traits<XprType> XprTraits;
|
||||
@ -48,6 +41,11 @@ struct nested<TensorIndexPairOp<XprType>, 1, typename eval<TensorIndexPairOp<Xpr
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor + Index Pair class.
|
||||
*/
|
||||
template <typename XprType>
|
||||
class TensorIndexPairOp : public TensorBase<TensorIndexPairOp<XprType>, ReadOnlyAccessors> {
|
||||
public:
|
||||
|
@ -15,14 +15,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorAssign
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief The tensor assignment class.
|
||||
*
|
||||
* This class is represents the assignment of the values resulting from the evaluation of
|
||||
* the rhs expression to the memory locations denoted by the lhs expression.
|
||||
*/
|
||||
namespace internal {
|
||||
template <typename LhsXprType, typename RhsXprType>
|
||||
struct traits<TensorAssignOp<LhsXprType, RhsXprType> > {
|
||||
@ -53,6 +45,12 @@ struct nested<TensorAssignOp<LhsXprType, RhsXprType>, 1, typename eval<TensorAss
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** The tensor assignment class.
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* This class is represents the assignment of the values resulting from the evaluation of
|
||||
* the rhs expression to the memory locations denoted by the lhs expression.
|
||||
*/
|
||||
template <typename LhsXprType, typename RhsXprType>
|
||||
class TensorAssignOp : public TensorBase<TensorAssignOp<LhsXprType, RhsXprType> > {
|
||||
public:
|
||||
|
@ -15,13 +15,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorBroadcasting
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor broadcasting class.
|
||||
*
|
||||
*
|
||||
*/
|
||||
namespace internal {
|
||||
template <typename Broadcast, typename XprType>
|
||||
struct traits<TensorBroadcastingOp<Broadcast, XprType>> : public traits<XprType> {
|
||||
@ -62,6 +55,9 @@ struct is_input_scalar<Sizes<Indices...>> {
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** Tensor broadcasting class.
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*/
|
||||
template <typename Broadcast, typename XprType>
|
||||
class TensorBroadcastingOp : public TensorBase<TensorBroadcastingOp<Broadcast, XprType>, ReadOnlyAccessors> {
|
||||
public:
|
||||
|
@ -15,14 +15,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorKChippingReshaping
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief A chip is a thin slice, corresponding to a column or a row in a 2-d tensor.
|
||||
*
|
||||
*
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template <DenseIndex DimId, typename XprType>
|
||||
struct traits<TensorChippingOp<DimId, XprType> > : public traits<XprType> {
|
||||
@ -66,6 +58,9 @@ struct DimensionId<Dynamic> {
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** A chip is a thin slice, corresponding to a column or a row in a 2-d tensor.
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*/
|
||||
template <DenseIndex DimId, typename XprType>
|
||||
class TensorChippingOp : public TensorBase<TensorChippingOp<DimId, XprType> > {
|
||||
public:
|
||||
|
@ -15,13 +15,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorConcatenationOp
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor concatenation class.
|
||||
*
|
||||
*
|
||||
*/
|
||||
namespace internal {
|
||||
template <typename Axis, typename LhsXprType, typename RhsXprType>
|
||||
struct traits<TensorConcatenationOp<Axis, LhsXprType, RhsXprType> > {
|
||||
@ -56,6 +49,11 @@ struct nested<TensorConcatenationOp<Axis, LhsXprType, RhsXprType>, 1,
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor concatenation class.
|
||||
*/
|
||||
template <typename Axis, typename LhsXprType, typename RhsXprType>
|
||||
class TensorConcatenationOp : public TensorBase<TensorConcatenationOp<Axis, LhsXprType, RhsXprType>, WriteAccessors> {
|
||||
public:
|
||||
|
@ -15,13 +15,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorContraction
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor contraction class.
|
||||
*
|
||||
*
|
||||
*/
|
||||
namespace internal {
|
||||
|
||||
template <typename Dimensions, typename LhsXprType, typename RhsXprType, typename OutputKernelType>
|
||||
@ -301,6 +294,9 @@ struct NoOpOutputKernel {
|
||||
}
|
||||
};
|
||||
|
||||
/** Tensor contraction class.
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*/
|
||||
template <typename Indices, typename LhsXprType, typename RhsXprType,
|
||||
typename OutputKernelType = const NoOpOutputKernel>
|
||||
class TensorContractionOp
|
||||
|
@ -15,13 +15,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorConversionOp
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor conversion class. This class makes it possible to vectorize
|
||||
* type casting operations when the number of scalars per packet in the source
|
||||
* and the destination type differ
|
||||
*/
|
||||
namespace internal {
|
||||
template <typename TargetType, typename XprType>
|
||||
struct traits<TensorConversionOp<TargetType, XprType> > {
|
||||
@ -162,6 +155,13 @@ struct PacketConverter<TensorEvaluator, SrcPacket, TgtPacket, 1, TgtCoeffRatio>
|
||||
const typename TensorEvaluator::Index m_maxIndex;
|
||||
};
|
||||
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor conversion class. This class makes it possible to vectorize
|
||||
* type casting operations when the number of scalars per packet in the source
|
||||
* and the destination type differ
|
||||
*/
|
||||
template <typename TargetType, typename XprType>
|
||||
class TensorConversionOp : public TensorBase<TensorConversionOp<TargetType, XprType>, ReadOnlyAccessors> {
|
||||
public:
|
||||
|
@ -15,13 +15,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorConvolution
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor convolution class.
|
||||
*
|
||||
*
|
||||
*/
|
||||
namespace internal {
|
||||
|
||||
template <typename Index, typename InputDims, int NumKernelDims, int Layout>
|
||||
@ -231,6 +224,9 @@ struct nested<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType>, 1,
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** Tensor convolution class.
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*/
|
||||
template <typename Indices, typename InputXprType, typename KernelXprType>
|
||||
class TensorConvolutionOp
|
||||
: public TensorBase<TensorConvolutionOp<Indices, InputXprType, KernelXprType>, ReadOnlyAccessors> {
|
||||
|
@ -20,14 +20,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorConvolution
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor convolution class.
|
||||
*
|
||||
*
|
||||
*/
|
||||
|
||||
enum class convolution_type { CONV1D, CONV2D, CONV3D };
|
||||
template <typename Evaluator, typename CoeffReturnType, typename KernelType, typename Index, typename InputDims,
|
||||
typename Kernel_accessor, typename Buffer_accessor, convolution_type Conv_Dim>
|
||||
|
@ -15,14 +15,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorEvaluator
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief A cost model used to limit the number of threads used for evaluating
|
||||
* tensor expression.
|
||||
*
|
||||
*/
|
||||
|
||||
// Class storing the cost of evaluating a tensor expression in terms of the
|
||||
// estimated number of operand bytes loads, bytes stored, and compute cycles.
|
||||
class TensorOpCost {
|
||||
@ -137,6 +129,13 @@ class TensorOpCost {
|
||||
// TODO(rmlarsen): Implement a policy that chooses an "optimal" number of theads
|
||||
// in [1:max_threads] instead of just switching multi-threading off for small
|
||||
// work units.
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief A cost model used to limit the number of threads used for evaluating
|
||||
* tensor expression.
|
||||
*
|
||||
*/
|
||||
template <typename Device>
|
||||
class TensorCostModel {
|
||||
public:
|
||||
|
@ -15,13 +15,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorCustomUnaryOp
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor custom class.
|
||||
*
|
||||
*
|
||||
*/
|
||||
namespace internal {
|
||||
template <typename CustomUnaryFunc, typename XprType>
|
||||
struct traits<TensorCustomUnaryOp<CustomUnaryFunc, XprType> > {
|
||||
@ -47,6 +40,11 @@ struct nested<TensorCustomUnaryOp<CustomUnaryFunc, XprType> > {
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor custom class.
|
||||
*/
|
||||
template <typename CustomUnaryFunc, typename XprType>
|
||||
class TensorCustomUnaryOp : public TensorBase<TensorCustomUnaryOp<CustomUnaryFunc, XprType>, ReadOnlyAccessors> {
|
||||
public:
|
||||
|
@ -15,7 +15,7 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorDevice
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Pseudo expression providing an operator = that will evaluate its argument
|
||||
@ -26,7 +26,6 @@ namespace Eigen {
|
||||
*
|
||||
* Todo: operator *= and /=.
|
||||
*/
|
||||
|
||||
template <typename ExpressionType, typename DeviceType>
|
||||
class TensorDevice {
|
||||
public:
|
||||
|
@ -17,14 +17,12 @@ namespace Eigen {
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* \class TensorDimensionList
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Special case of tensor index list used to list all the dimensions of a tensor of rank n.
|
||||
*
|
||||
* \sa Tensor
|
||||
*/
|
||||
|
||||
template <typename Index, std::size_t Rank>
|
||||
struct DimensionList {
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE const Index operator[](const Index i) const { return i; }
|
||||
|
@ -15,22 +15,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* \class TensorDimensions
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Set of classes used to encode and store the dimensions of a Tensor.
|
||||
*
|
||||
* The Sizes class encodes as part of the type the number of dimensions and the
|
||||
* sizes corresponding to each dimension. It uses no storage space since it is
|
||||
* entirely known at compile time.
|
||||
* The DSizes class is its dynamic sibling: the number of dimensions is known
|
||||
* at compile time but the sizes are set during execution.
|
||||
*
|
||||
* \sa Tensor
|
||||
*/
|
||||
|
||||
// Boilerplate code
|
||||
namespace internal {
|
||||
|
||||
@ -80,7 +64,18 @@ struct fixed_size_tensor_index_extraction_helper<Index, 0> {
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
// Fixed size
|
||||
/** \internal
|
||||
*
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Fixed dimensions of a Tensor.
|
||||
*
|
||||
* The Sizes class encodes as part of the type the number of dimensions and the
|
||||
* sizes corresponding to each dimension. It uses no storage space since it is
|
||||
* entirely known at compile time.
|
||||
*
|
||||
* \sa Tensor
|
||||
*/
|
||||
template <typename std::ptrdiff_t... Indices>
|
||||
struct Sizes {
|
||||
typedef internal::numeric_list<std::ptrdiff_t, Indices...> Base;
|
||||
@ -156,7 +151,17 @@ struct tensor_index_linearization_helper<Index, NumIndices, 0, RowMajor> {
|
||||
};
|
||||
} // end namespace internal
|
||||
|
||||
// Dynamic size
|
||||
/** \internal
|
||||
*
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Dynamic dimensions of a Tensor.
|
||||
*
|
||||
* The DSizes class is its dynamic sibling: the number of dimensions is known
|
||||
* at compile time but the sizes are set during execution.
|
||||
*
|
||||
* \sa Tensor
|
||||
*/
|
||||
template <typename DenseIndex, int NumDims>
|
||||
struct DSizes : array<DenseIndex, NumDims> {
|
||||
typedef array<DenseIndex, NumDims> Base;
|
||||
|
@ -15,13 +15,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorForcedEval
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor reshaping class.
|
||||
*
|
||||
*
|
||||
*/
|
||||
namespace internal {
|
||||
template <typename XprType, template <class> class MakePointer_>
|
||||
struct traits<TensorEvalToOp<XprType, MakePointer_> > {
|
||||
|
@ -15,18 +15,17 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorEvaluator
|
||||
// Generic evaluator
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief The tensor evaluator classes.
|
||||
* \brief The tensor evaluator class.
|
||||
*
|
||||
* These classes are responsible for the evaluation of the tensor expression.
|
||||
*
|
||||
* TODO: add support for more types of expressions, in particular expressions
|
||||
* leading to lvalues (slicing, reshaping, etc...)
|
||||
*/
|
||||
|
||||
// Generic evaluator
|
||||
template <typename Derived, typename Device>
|
||||
struct TensorEvaluator {
|
||||
typedef typename Derived::Index Index;
|
||||
|
@ -15,20 +15,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/**
|
||||
* \class TensorExecutor
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief The tensor executor class.
|
||||
*
|
||||
* This class is responsible for launch the evaluation of the expression on
|
||||
* the specified computing device.
|
||||
*
|
||||
* @tparam Vectorizable can use packet math (SSE/AVX/etc... registers and
|
||||
* instructions)
|
||||
* @tparam Tiling can use block based tensor evaluation
|
||||
* (see TensorBlock.h)
|
||||
*/
|
||||
namespace internal {
|
||||
|
||||
/**
|
||||
@ -71,8 +57,20 @@ struct ExpressionHasTensorBroadcastingOp<const TensorBroadcastingOp<Broadcast, X
|
||||
// -------------------------------------------------------------------------- //
|
||||
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief The tensor executor class.
|
||||
*
|
||||
* This class is responsible for launch the evaluation of the expression on
|
||||
* the specified computing device.
|
||||
*
|
||||
* Default strategy: the expression is evaluated sequentially with a single cpu
|
||||
* thread, without vectorization and block evaluation.
|
||||
*
|
||||
* @tparam Vectorizable can use packet math (SSE/AVX/etc... registers and
|
||||
* instructions)
|
||||
* @tparam Tiling can use block based tensor evaluation
|
||||
* (see TensorBlock.h)
|
||||
*/
|
||||
template <typename Expression, typename Device, bool Vectorizable, TiledEvaluation Tiling>
|
||||
class TensorExecutor {
|
||||
|
@ -15,21 +15,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorExpr
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor expression classes.
|
||||
*
|
||||
* The TensorCwiseNullaryOp class applies a nullary operators to an expression.
|
||||
* This is typically used to generate constants.
|
||||
*
|
||||
* The TensorCwiseUnaryOp class represents an expression where a unary operator
|
||||
* (e.g. cwiseSqrt) is applied to an expression.
|
||||
*
|
||||
* The TensorCwiseBinaryOp class represents an expression where a binary
|
||||
* operator (e.g. addition) is applied to a lhs and a rhs expression.
|
||||
*
|
||||
*/
|
||||
namespace internal {
|
||||
template <typename NullaryOp, typename XprType>
|
||||
struct traits<TensorCwiseNullaryOp<NullaryOp, XprType> > : traits<XprType> {
|
||||
@ -45,6 +30,14 @@ struct traits<TensorCwiseNullaryOp<NullaryOp, XprType> > : traits<XprType> {
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor nullary expression.
|
||||
*
|
||||
* The TensorCwiseNullaryOp class applies a nullary operators to an expression.
|
||||
* This is typically used to generate constants.
|
||||
*/
|
||||
template <typename NullaryOp, typename XprType>
|
||||
class TensorCwiseNullaryOp : public TensorBase<TensorCwiseNullaryOp<NullaryOp, XprType>, ReadOnlyAccessors> {
|
||||
public:
|
||||
@ -93,6 +86,14 @@ struct nested<TensorCwiseUnaryOp<UnaryOp, XprType>, 1, typename eval<TensorCwise
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor unary expression.
|
||||
*
|
||||
* The TensorCwiseUnaryOp class represents an expression where a unary operator
|
||||
* (e.g. cwiseSqrt) is applied to an expression.
|
||||
*/
|
||||
template <typename UnaryOp, typename XprType>
|
||||
class TensorCwiseUnaryOp : public TensorBase<TensorCwiseUnaryOp<UnaryOp, XprType>, ReadOnlyAccessors> {
|
||||
public:
|
||||
@ -157,6 +158,14 @@ struct nested<TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType>, 1,
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor binary expression.
|
||||
*
|
||||
* The TensorCwiseBinaryOp class represents an expression where a binary
|
||||
* operator (e.g. addition) is applied to a lhs and a rhs expression.
|
||||
*/
|
||||
template <typename BinaryOp, typename LhsXprType, typename RhsXprType>
|
||||
class TensorCwiseBinaryOp
|
||||
: public TensorBase<TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType>, ReadOnlyAccessors> {
|
||||
|
@ -15,17 +15,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorFFT
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor FFT class.
|
||||
*
|
||||
* TODO:
|
||||
* Vectorize the Cooley Tukey and the Bluestein algorithm
|
||||
* Add support for multithreaded evaluation
|
||||
* Improve the performance on GPU
|
||||
*/
|
||||
|
||||
template <bool NeedUprade>
|
||||
struct MakeComplex {
|
||||
template <typename T>
|
||||
@ -105,6 +94,16 @@ struct nested<TensorFFTOp<FFT, XprType, FFTResultType, FFTDirection>, 1,
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor FFT class.
|
||||
*
|
||||
* TODO:
|
||||
* Vectorize the Cooley Tukey and the Bluestein algorithm
|
||||
* Add support for multithreaded evaluation
|
||||
* Improve the performance on GPU
|
||||
*/
|
||||
template <typename FFT, typename XprType, int FFTResultType, int FFTDir>
|
||||
class TensorFFTOp : public TensorBase<TensorFFTOp<FFT, XprType, FFTResultType, FFTDir>, ReadOnlyAccessors> {
|
||||
public:
|
||||
|
@ -15,7 +15,7 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorFixedSize
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief The fixed sized version of the tensor class.
|
||||
@ -25,7 +25,6 @@ namespace Eigen {
|
||||
* is
|
||||
* Eigen::TensorFixedSize<float, Sizes<3,5,7>> t;
|
||||
*/
|
||||
|
||||
template <typename Scalar_, typename Dimensions_, int Options_, typename IndexType>
|
||||
class TensorFixedSize : public TensorBase<TensorFixedSize<Scalar_, Dimensions_, Options_, IndexType> > {
|
||||
public:
|
||||
|
@ -17,13 +17,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorForcedEval
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor reshaping class.
|
||||
*
|
||||
*
|
||||
*/
|
||||
namespace internal {
|
||||
template <typename XprType>
|
||||
struct traits<TensorForcedEvalOp<XprType>> {
|
||||
@ -53,6 +46,11 @@ struct nested<TensorForcedEvalOp<XprType>, 1, typename eval<TensorForcedEvalOp<X
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor reshaping class.
|
||||
*/
|
||||
template <typename XprType>
|
||||
class TensorForcedEvalOp : public TensorBase<TensorForcedEvalOp<XprType>, ReadOnlyAccessors> {
|
||||
public:
|
||||
|
@ -15,13 +15,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorGeneratorOp
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor generator class.
|
||||
*
|
||||
*
|
||||
*/
|
||||
namespace internal {
|
||||
template <typename Generator, typename XprType>
|
||||
struct traits<TensorGeneratorOp<Generator, XprType> > : public traits<XprType> {
|
||||
@ -48,6 +41,11 @@ struct nested<TensorGeneratorOp<Generator, XprType>, 1, typename eval<TensorGene
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor generator class.
|
||||
*/
|
||||
template <typename Generator, typename XprType>
|
||||
class TensorGeneratorOp : public TensorBase<TensorGeneratorOp<Generator, XprType>, ReadOnlyAccessors> {
|
||||
public:
|
||||
|
@ -15,20 +15,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorImagePatch
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Patch extraction specialized for image processing.
|
||||
* This assumes that the input has a least 3 dimensions ordered as follow:
|
||||
* 1st dimension: channels (of size d)
|
||||
* 2nd dimension: rows (of size r)
|
||||
* 3rd dimension: columns (of size c)
|
||||
* There can be additional dimensions such as time (for video) or batch (for
|
||||
* bulk processing after the first 3.
|
||||
* Calling the image patch code with patch_rows and patch_cols is equivalent
|
||||
* to calling the regular patch extraction code with parameters d, patch_rows,
|
||||
* patch_cols, and 1 for all the additional dimensions.
|
||||
*/
|
||||
namespace internal {
|
||||
|
||||
template <DenseIndex Rows, DenseIndex Cols, typename XprType>
|
||||
@ -113,6 +99,20 @@ struct ImagePatchPaddingOp {
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Patch extraction specialized for image processing.
|
||||
* This assumes that the input has a least 3 dimensions ordered as follow:
|
||||
* 1st dimension: channels (of size d)
|
||||
* 2nd dimension: rows (of size r)
|
||||
* 3rd dimension: columns (of size c)
|
||||
* There can be additional dimensions such as time (for video) or batch (for
|
||||
* bulk processing after the first 3.
|
||||
* Calling the image patch code with patch_rows and patch_cols is equivalent
|
||||
* to calling the regular patch extraction code with parameters d, patch_rows,
|
||||
* patch_cols, and 1 for all the additional dimensions.
|
||||
*/
|
||||
template <DenseIndex Rows, DenseIndex Cols, typename XprType>
|
||||
class TensorImagePatchOp : public TensorBase<TensorImagePatchOp<Rows, Cols, XprType>, ReadOnlyAccessors> {
|
||||
public:
|
||||
|
@ -15,26 +15,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* \class TensorIndexList
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Set of classes used to encode a set of Tensor dimensions/indices.
|
||||
*
|
||||
* The indices in the list can be known at compile time or at runtime. A mix
|
||||
* of static and dynamic indices can also be provided if needed. The tensor
|
||||
* code will attempt to take advantage of the indices that are known at
|
||||
* compile time to optimize the code it generates.
|
||||
*
|
||||
* This functionality requires a c++11 compliant compiler. If your compiler
|
||||
* is older you need to use arrays of indices instead.
|
||||
*
|
||||
* Several examples are provided in the cxx11_tensor_index_list.cpp file.
|
||||
*
|
||||
* \sa Tensor
|
||||
*/
|
||||
|
||||
template <Index n>
|
||||
struct type2index {
|
||||
static constexpr Index value = n;
|
||||
@ -267,6 +247,25 @@ struct tuple_coeff<0, ValueT> {
|
||||
};
|
||||
} // namespace internal
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Set of classes used to encode a set of Tensor dimensions/indices.
|
||||
*
|
||||
* The indices in the list can be known at compile time or at runtime. A mix
|
||||
* of static and dynamic indices can also be provided if needed. The tensor
|
||||
* code will attempt to take advantage of the indices that are known at
|
||||
* compile time to optimize the code it generates.
|
||||
*
|
||||
* This functionality requires a c++11 compliant compiler. If your compiler
|
||||
* is older you need to use arrays of indices instead.
|
||||
*
|
||||
* Several examples are provided in the cxx11_tensor_index_list.cpp file.
|
||||
*
|
||||
* \sa Tensor
|
||||
*/
|
||||
|
||||
template <typename FirstType, typename... OtherTypes>
|
||||
struct IndexList : internal::IndexTuple<FirstType, OtherTypes...> {
|
||||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC constexpr Index operator[](const Index i) const {
|
||||
|
@ -15,13 +15,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorInflation
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor inflation class.
|
||||
*
|
||||
*
|
||||
*/
|
||||
namespace internal {
|
||||
template <typename Strides, typename XprType>
|
||||
struct traits<TensorInflationOp<Strides, XprType> > : public traits<XprType> {
|
||||
@ -48,6 +41,11 @@ struct nested<TensorInflationOp<Strides, XprType>, 1, typename eval<TensorInflat
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor inflation class.
|
||||
*/
|
||||
template <typename Strides, typename XprType>
|
||||
class TensorInflationOp : public TensorBase<TensorInflationOp<Strides, XprType>, ReadOnlyAccessors> {
|
||||
public:
|
||||
|
@ -17,13 +17,13 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorInitializer
|
||||
namespace internal {
|
||||
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Helper template to initialize Tensors from std::initializer_lists.
|
||||
*/
|
||||
namespace internal {
|
||||
|
||||
template <typename Derived, int N>
|
||||
struct Initializer {
|
||||
typedef std::initializer_list<typename Initializer<Derived, N - 1>::InitList> InitList;
|
||||
|
@ -15,19 +15,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* \class TensorIntDiv
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Fast integer division by a constant.
|
||||
*
|
||||
* See the paper from Granlund and Montgomery for explanation.
|
||||
* (at https://doi.org/10.1145/773473.178249)
|
||||
*
|
||||
* \sa Tensor
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
|
||||
// Note: result is undefined if val == 0
|
||||
@ -136,6 +123,17 @@ struct DividerHelper<64, T> {
|
||||
}
|
||||
};
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Fast integer division by a constant.
|
||||
*
|
||||
* See the paper from Granlund and Montgomery for explanation.
|
||||
* (at https://doi.org/10.1145/773473.178249)
|
||||
*
|
||||
* \sa Tensor
|
||||
*/
|
||||
template <typename T, bool div_gt_one = false>
|
||||
struct TensorIntDivisor {
|
||||
public:
|
||||
|
@ -15,28 +15,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorLayoutSwap
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Swap the layout from col-major to row-major, or row-major
|
||||
* to col-major, and invert the order of the dimensions.
|
||||
*
|
||||
* Beware: the dimensions are reversed by this operation. If you want to
|
||||
* preserve the ordering of the dimensions, you need to combine this
|
||||
* operation with a shuffle.
|
||||
*
|
||||
* \example:
|
||||
* Tensor<float, 2, ColMajor> input(2, 4);
|
||||
* Tensor<float, 2, RowMajor> output = input.swap_layout();
|
||||
* eigen_assert(output.dimension(0) == 4);
|
||||
* eigen_assert(output.dimension(1) == 2);
|
||||
*
|
||||
* array<int, 2> shuffle(1, 0);
|
||||
* output = input.swap_layout().shuffle(shuffle);
|
||||
* eigen_assert(output.dimension(0) == 2);
|
||||
* eigen_assert(output.dimension(1) == 4);
|
||||
*
|
||||
*/
|
||||
namespace internal {
|
||||
template <typename XprType>
|
||||
struct traits<TensorLayoutSwapOp<XprType> > : public traits<XprType> {
|
||||
@ -63,6 +41,28 @@ struct nested<TensorLayoutSwapOp<XprType>, 1, typename eval<TensorLayoutSwapOp<X
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Swap the layout from col-major to row-major, or row-major
|
||||
* to col-major, and invert the order of the dimensions.
|
||||
*
|
||||
* Beware: the dimensions are reversed by this operation. If you want to
|
||||
* preserve the ordering of the dimensions, you need to combine this
|
||||
* operation with a shuffle.
|
||||
*
|
||||
* \example:
|
||||
* Tensor<float, 2, ColMajor> input(2, 4);
|
||||
* Tensor<float, 2, RowMajor> output = input.swap_layout();
|
||||
* eigen_assert(output.dimension(0) == 4);
|
||||
* eigen_assert(output.dimension(1) == 2);
|
||||
*
|
||||
* array<int, 2> shuffle(1, 0);
|
||||
* output = input.swap_layout().shuffle(shuffle);
|
||||
* eigen_assert(output.dimension(0) == 2);
|
||||
* eigen_assert(output.dimension(1) == 4);
|
||||
*
|
||||
*/
|
||||
template <typename XprType>
|
||||
class TensorLayoutSwapOp : public TensorBase<TensorLayoutSwapOp<XprType>, WriteAccessors> {
|
||||
public:
|
||||
|
@ -17,7 +17,7 @@ namespace Eigen {
|
||||
|
||||
// FIXME use proper doxygen documentation (e.g. \tparam MakePointer_)
|
||||
|
||||
/** \class TensorMap
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief A tensor expression mapping an existing array of data.
|
||||
|
@ -15,13 +15,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorReshaping
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor reshaping class.
|
||||
*
|
||||
*
|
||||
*/
|
||||
namespace internal {
|
||||
template <typename NewDimensions, typename XprType>
|
||||
struct traits<TensorReshapingOp<NewDimensions, XprType>> : public traits<XprType> {
|
||||
@ -49,6 +42,11 @@ struct nested<TensorReshapingOp<NewDimensions, XprType>, 1,
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor reshaping class.
|
||||
*/
|
||||
template <typename NewDimensions, typename XprType>
|
||||
class TensorReshapingOp : public TensorBase<TensorReshapingOp<NewDimensions, XprType>, WriteAccessors> {
|
||||
public:
|
||||
|
@ -15,13 +15,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorPadding
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor padding class.
|
||||
* At the moment only padding with a constant value is supported.
|
||||
*
|
||||
*/
|
||||
namespace internal {
|
||||
template <typename PaddingDimensions, typename XprType>
|
||||
struct traits<TensorPaddingOp<PaddingDimensions, XprType> > : public traits<XprType> {
|
||||
@ -49,6 +42,13 @@ struct nested<TensorPaddingOp<PaddingDimensions, XprType>, 1,
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor padding class.
|
||||
* At the moment only padding with a constant value is supported.
|
||||
*
|
||||
*/
|
||||
template <typename PaddingDimensions, typename XprType>
|
||||
class TensorPaddingOp : public TensorBase<TensorPaddingOp<PaddingDimensions, XprType>, ReadOnlyAccessors> {
|
||||
public:
|
||||
|
@ -15,13 +15,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorPatch
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor patch class.
|
||||
*
|
||||
*
|
||||
*/
|
||||
namespace internal {
|
||||
template <typename PatchDim, typename XprType>
|
||||
struct traits<TensorPatchOp<PatchDim, XprType> > : public traits<XprType> {
|
||||
@ -48,6 +41,11 @@ struct nested<TensorPatchOp<PatchDim, XprType>, 1, typename eval<TensorPatchOp<P
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor patch class.
|
||||
*/
|
||||
template <typename PatchDim, typename XprType>
|
||||
class TensorPatchOp : public TensorBase<TensorPatchOp<PatchDim, XprType>, ReadOnlyAccessors> {
|
||||
public:
|
||||
|
@ -26,13 +26,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorReduction
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor reduction class.
|
||||
*
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template <typename Op, typename Dims, typename XprType, template <class> class MakePointer_>
|
||||
struct traits<TensorReductionOp<Op, Dims, XprType, MakePointer_> > : traits<XprType> {
|
||||
@ -506,6 +499,12 @@ struct ReductionReturnType {
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor reduction class.
|
||||
*
|
||||
*/
|
||||
template <typename Op, typename Dims, typename XprType, template <class> class MakePointer_>
|
||||
class TensorReductionOp : public TensorBase<TensorReductionOp<Op, Dims, XprType, MakePointer_>, ReadOnlyAccessors> {
|
||||
public:
|
||||
|
@ -15,12 +15,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorReverse
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor reverse elements class.
|
||||
*
|
||||
*/
|
||||
namespace internal {
|
||||
template <typename ReverseDimensions, typename XprType>
|
||||
struct traits<TensorReverseOp<ReverseDimensions, XprType> > : public traits<XprType> {
|
||||
@ -48,6 +42,12 @@ struct nested<TensorReverseOp<ReverseDimensions, XprType>, 1,
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor reverse elements class.
|
||||
*
|
||||
*/
|
||||
template <typename ReverseDimensions, typename XprType>
|
||||
class TensorReverseOp : public TensorBase<TensorReverseOp<ReverseDimensions, XprType>, WriteAccessors> {
|
||||
public:
|
||||
|
@ -14,12 +14,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorRoll
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor roll (circular shift) elements class.
|
||||
*
|
||||
*/
|
||||
namespace internal {
|
||||
template <typename RollDimensions, typename XprType>
|
||||
struct traits<TensorRollOp<RollDimensions, XprType> > : public traits<XprType> {
|
||||
@ -46,6 +40,12 @@ struct nested<TensorRollOp<RollDimensions, XprType>, 1, typename eval<TensorRoll
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor roll (circular shift) elements class.
|
||||
*
|
||||
*/
|
||||
template <typename RollDimensions, typename XprType>
|
||||
class TensorRollOp : public TensorBase<TensorRollOp<RollDimensions, XprType>, WriteAccessors> {
|
||||
public:
|
||||
|
@ -40,7 +40,7 @@ struct nested<TensorScanOp<Op, XprType>, 1, typename eval<TensorScanOp<Op, XprTy
|
||||
};
|
||||
} // end namespace internal
|
||||
|
||||
/** \class TensorScan
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor scan class.
|
||||
|
@ -15,13 +15,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorShuffling
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor shuffling class.
|
||||
*
|
||||
*
|
||||
*/
|
||||
namespace internal {
|
||||
template <typename Shuffle, typename XprType>
|
||||
struct traits<TensorShufflingOp<Shuffle, XprType> > : public traits<XprType> {
|
||||
@ -48,6 +41,11 @@ struct nested<TensorShufflingOp<Shuffle, XprType>, 1, typename eval<TensorShuffl
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor shuffling class.
|
||||
*/
|
||||
template <typename Shuffle, typename XprType>
|
||||
class TensorShufflingOp : public TensorBase<TensorShufflingOp<Shuffle, XprType> > {
|
||||
public:
|
||||
|
@ -24,7 +24,6 @@ namespace Eigen {
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* \class TensorStorage
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Stores the data of a tensor
|
||||
|
@ -15,13 +15,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorStriding
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor striding class.
|
||||
*
|
||||
*
|
||||
*/
|
||||
namespace internal {
|
||||
template <typename Strides, typename XprType>
|
||||
struct traits<TensorStridingOp<Strides, XprType> > : public traits<XprType> {
|
||||
@ -48,6 +41,11 @@ struct nested<TensorStridingOp<Strides, XprType>, 1, typename eval<TensorStridin
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor striding class.
|
||||
*/
|
||||
template <typename Strides, typename XprType>
|
||||
class TensorStridingOp : public TensorBase<TensorStridingOp<Strides, XprType> > {
|
||||
public:
|
||||
|
@ -16,14 +16,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorTrace
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor Trace class.
|
||||
*
|
||||
*
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template <typename Dims, typename XprType>
|
||||
struct traits<TensorTraceOp<Dims, XprType> > : public traits<XprType> {
|
||||
@ -49,6 +41,11 @@ struct nested<TensorTraceOp<Dims, XprType>, 1, typename eval<TensorTraceOp<Dims,
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor Trace class.
|
||||
*/
|
||||
template <typename Dims, typename XprType>
|
||||
class TensorTraceOp : public TensorBase<TensorTraceOp<Dims, XprType> > {
|
||||
public:
|
||||
|
@ -9,21 +9,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorVolumePatch
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Patch extraction specialized for processing of volumetric data.
|
||||
* This assumes that the input has a least 4 dimensions ordered as follows:
|
||||
* - channels
|
||||
* - planes
|
||||
* - rows
|
||||
* - columns
|
||||
* - (optional) additional dimensions such as time or batch size.
|
||||
* Calling the volume patch code with patch_planes, patch_rows, and patch_cols
|
||||
* is equivalent to calling the regular patch extraction code with parameters
|
||||
* d, patch_planes, patch_rows, patch_cols, and 1 for all the additional
|
||||
* dimensions.
|
||||
*/
|
||||
namespace internal {
|
||||
|
||||
template <DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
|
||||
@ -52,6 +37,21 @@ struct nested<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, 1,
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/**
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Patch extraction specialized for processing of volumetric data.
|
||||
* This assumes that the input has a least 4 dimensions ordered as follows:
|
||||
* - channels
|
||||
* - planes
|
||||
* - rows
|
||||
* - columns
|
||||
* - (optional) additional dimensions such as time or batch size.
|
||||
* Calling the volume patch code with patch_planes, patch_rows, and patch_cols
|
||||
* is equivalent to calling the regular patch extraction code with parameters
|
||||
* d, patch_planes, patch_rows, patch_cols, and 1 for all the additional
|
||||
* dimensions.
|
||||
*/
|
||||
template <DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
|
||||
class TensorVolumePatchOp : public TensorBase<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, ReadOnlyAccessors> {
|
||||
public:
|
||||
|
Loading…
x
Reference in New Issue
Block a user