rework Identity API: no longer restricted to square matrices

This commit is contained in:
Benoit Jacob 2008-01-11 15:56:21 +00:00
parent e092cbc75c
commit bcf7b29185
14 changed files with 67 additions and 41 deletions

View File

@ -30,7 +30,7 @@
*
* \brief Expression of the identity matrix of some size.
*
* \sa MatrixBase::identity(int)
* \sa MatrixBase::identity(), MatrixBase::identity(int,int), MatrixBase::setIdentity()
*/
template<typename MatrixType> class Identity : NoOperatorEquals,
public MatrixBase<typename MatrixType::Scalar, Identity<MatrixType> >
@ -39,9 +39,12 @@ template<typename MatrixType> class Identity : NoOperatorEquals,
typedef typename MatrixType::Scalar Scalar;
friend class MatrixBase<Scalar, Identity<MatrixType> >;
Identity(int rows) : m_rows(rows)
Identity(int rows, int cols) : m_rows(rows), m_cols(cols)
{
assert(rows > 0 && RowsAtCompileTime == ColsAtCompileTime);
assert(rows > 0
&& (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
&& cols > 0
&& (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
}
private:
@ -52,7 +55,7 @@ template<typename MatrixType> class Identity : NoOperatorEquals,
const Identity& _ref() const { return *this; }
int _rows() const { return m_rows; }
int _cols() const { return m_rows; }
int _cols() const { return m_cols; }
Scalar _coeff(int row, int col) const
{
@ -60,65 +63,84 @@ template<typename MatrixType> class Identity : NoOperatorEquals,
}
protected:
const int m_rows;
const int m_rows, m_cols;
};
/** \returns an expression of the identity matrix of given type and size.
/** \returns an expression of the identity matrix (not necessarily square).
*
* \param rows The number of rows of the identity matrix to return. If *this has
* fixed size, that size is used as the default argument for \a rows
* and is then the only allowed value. If *this has dynamic size,
* you can use any positive value for \a rows.
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* \note An identity matrix is a square matrix, so it is required that the type of *this
* allows being a square matrix.
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so identity() should be used
* instead.
*
* Example: \include MatrixBase_identity_int.cpp
* Output: \verbinclude MatrixBase_identity_int.out
* Example: \include MatrixBase_identity_int_int.cpp
* Output: \verbinclude MatrixBase_identity_int_int.out
*
* \sa class Identity, isIdentity()
* \sa identity(), setIdentity(), isIdentity()
*/
template<typename Scalar, typename Derived>
const Identity<Derived> MatrixBase<Scalar, Derived>::identity(int rows)
const Identity<Derived> MatrixBase<Scalar, Derived>::identity(int rows, int cols)
{
return Identity<Derived>(rows);
return Identity<Derived>(rows, cols);
}
/** \returns true if *this is approximately equal to the identity matrix,
/** \returns an expression of the identity matrix (not necessarily square).
*
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
* need to use the variant taking size arguments.
*
* Example: \include MatrixBase_identity.cpp
* Output: \verbinclude MatrixBase_identity.out
*
* \sa identity(int,int), setIdentity(), isIdentity()
*/
template<typename Scalar, typename Derived>
const Identity<Derived> MatrixBase<Scalar, Derived>::identity()
{
return Identity<Derived>(Traits::RowsAtCompileTime, Traits::ColsAtCompileTime);
}
/** \returns true if *this is approximately equal to the identity matrix
* (not necessarily square),
* within the precision given by \a prec.
*
* Example: \include MatrixBase_isIdentity.cpp
* Output: \verbinclude MatrixBase_isIdentity.out
*
* \sa class Identity, identity(int)
* \sa class Identity, identity(), identity(int,int), setIdentity()
*/
template<typename Scalar, typename Derived>
bool MatrixBase<Scalar, Derived>::isIdentity
(typename NumTraits<Scalar>::Real prec) const
{
if(cols() != rows()) return false;
for(int j = 0; j < cols(); j++)
{
if(!Eigen::isApprox(coeff(j, j), static_cast<Scalar>(1), prec))
return false;
for(int i = 0; i < j; i++)
if(!Eigen::isMuchSmallerThan(coeff(i, j), static_cast<Scalar>(1), prec))
return false;
for(int i = 0; i < rows(); i++)
{
if(i == j)
if(!Eigen::isApprox(coeff(i, j), static_cast<Scalar>(1), prec))
return false;
else
if(!Eigen::isMuchSmallerThan(coeff(i, j), static_cast<Scalar>(1), prec))
return false;
}
}
return true;
}
/** Writes the identity expression into *this.
/** Writes the identity expression (not necessarily square) into *this.
*
* Example: \include MatrixBase_setIdentity.cpp
* Output: \verbinclude MatrixBase_setIdentity.out
*
* \sa class Identity, identity()
* \sa class Identity, identity(), identity(int,int), isIdentity()
*/
template<typename Scalar, typename Derived>
Derived& MatrixBase<Scalar, Derived>::setIdentity()
{
return *this = Identity<Derived>(rows());
return *this = Identity<Derived>(rows(), cols());
}

View File

@ -182,7 +182,8 @@ template<typename Scalar, typename Derived> class MatrixBase
static const Ones<Derived> ones(int rows, int cols);
static const Ones<Derived> ones(int size);
static const Ones<Derived> ones();
static const Identity<Derived> identity(int rows = Derived::RowsAtCompileTime);
static const Identity<Derived> identity();
static const Identity<Derived> identity(int rows, int cols);
bool isZero(RealScalar prec = precision<Scalar>()) const;
bool isOnes(RealScalar prec = precision<Scalar>()) const;

View File

@ -30,7 +30,8 @@
*
* \brief Expression of a matrix where all coefficients equal one.
*
* \sa MatrixBase::ones(), MatrixBase::ones(int), MatrixBase::ones(int,int)
* \sa MatrixBase::ones(), MatrixBase::ones(int), MatrixBase::ones(int,int),
* MatrixBase::setOnes(), MatrixBase::isOnes()
*/
template<typename MatrixType> class Ones : NoOperatorEquals,
public MatrixBase<typename MatrixType::Scalar, Ones<MatrixType> >

View File

@ -30,7 +30,8 @@
*
* \brief Expression of a random matrix or vector.
*
* \sa MatrixBase::random(), MatrixBase::random(int), MatrixBase::random(int,int)
* \sa MatrixBase::random(), MatrixBase::random(int), MatrixBase::random(int,int),
* MatrixBase::setRandom()
*/
template<typename MatrixType> class Random : NoOperatorEquals,
public MatrixBase<typename MatrixType::Scalar, Random<MatrixType> >

View File

@ -30,7 +30,8 @@
*
* \brief Expression of a zero matrix or vector.
*
* \sa MatrixBase::zero(), MatrixBase::zero(int), MatrixBase::zero(int,int)
* \sa MatrixBase::zero(), MatrixBase::zero(int), MatrixBase::zero(int,int),
* MatrixBase::setZero(), MatrixBase::isZero()
*/
template<typename MatrixType> class Zero : NoOperatorEquals,
public MatrixBase<typename MatrixType::Scalar, Zero<MatrixType> >

View File

@ -0,0 +1 @@
cout << Matrix<double, 3, 4>::identity() << endl;

View File

@ -1,2 +0,0 @@
cout << Matrix2d::identity() << endl;
cout << MatrixXd::identity(3) << endl;

View File

@ -0,0 +1 @@
cout << MatrixXd::identity(4, 3) << endl;

View File

@ -43,7 +43,7 @@ template<typename MatrixType> void adjoint(const MatrixType& m)
m3(rows, cols),
mzero = MatrixType::zero(rows, cols),
identity = Matrix<Scalar, MatrixType::Traits::RowsAtCompileTime, MatrixType::Traits::RowsAtCompileTime>
::identity(rows),
::identity(rows, rows),
square = Matrix<Scalar, MatrixType::Traits::RowsAtCompileTime, MatrixType::Traits::RowsAtCompileTime>
::random(rows, rows);
VectorType v1 = VectorType::random(rows),

View File

@ -42,7 +42,7 @@ template<typename MatrixType> void basicStuff(const MatrixType& m)
m3(rows, cols),
mzero = MatrixType::zero(rows, cols),
identity = Matrix<Scalar, MatrixType::Traits::RowsAtCompileTime, MatrixType::Traits::RowsAtCompileTime>
::identity(rows),
::identity(rows, rows),
square = Matrix<Scalar, MatrixType::Traits::RowsAtCompileTime, MatrixType::Traits::RowsAtCompileTime>
::random(rows, rows);
VectorType v1 = VectorType::random(rows),

View File

@ -46,7 +46,7 @@ template<typename MatrixType> void linearStructure(const MatrixType& m)
m3(rows, cols),
mzero = MatrixType::zero(rows, cols),
identity = Matrix<Scalar, MatrixType::Traits::RowsAtCompileTime, MatrixType::Traits::RowsAtCompileTime>
::identity(rows),
::identity(rows, rows),
square = Matrix<Scalar, MatrixType::Traits::RowsAtCompileTime, MatrixType::Traits::RowsAtCompileTime>
::random(rows, rows);
VectorType v1 = VectorType::random(rows),

View File

@ -51,7 +51,7 @@ template<typename MatrixType> void miscMatrices(const MatrixType& m)
else VERIFY_IS_MUCH_SMALLER_THAN(square(r,r2), static_cast<Scalar>(1));
square = MatrixType::zero(rows, rows);
square.diagonal() = VectorType::ones(rows);
VERIFY_IS_APPROX(square, MatrixType::identity(rows));
VERIFY_IS_APPROX(square, MatrixType::identity(rows, rows));
}
void EigenTest::testMiscMatrices()

View File

@ -46,7 +46,7 @@ template<typename MatrixType> void product(const MatrixType& m)
m3(rows, cols),
mzero = MatrixType::zero(rows, cols),
identity = Matrix<Scalar, MatrixType::Traits::RowsAtCompileTime, MatrixType::Traits::RowsAtCompileTime>
::identity(rows),
::identity(rows, rows),
square = Matrix<Scalar, MatrixType::Traits::RowsAtCompileTime, MatrixType::Traits::RowsAtCompileTime>
::random(rows, rows);
VectorType v1 = VectorType::random(rows),
@ -83,7 +83,7 @@ template<typename MatrixType> void product(const MatrixType& m)
VERIFY_IS_APPROX(m1, identity*m1);
VERIFY_IS_APPROX(v1, identity*v1);
// again, test operator() to check const-qualification
VERIFY_IS_APPROX(MatrixType::identity(std::max(rows,cols))(r,c), static_cast<Scalar>(r==c));
VERIFY_IS_APPROX(MatrixType::identity(rows, cols)(r,c), static_cast<Scalar>(r==c));
}
void EigenTest::testProduct()

View File

@ -44,7 +44,7 @@ template<typename MatrixType> void submatrices(const MatrixType& m)
m3(rows, cols),
mzero = MatrixType::zero(rows, cols),
identity = Matrix<Scalar, MatrixType::Traits::RowsAtCompileTime, MatrixType::Traits::RowsAtCompileTime>
::identity(rows),
::identity(rows, rows),
square = Matrix<Scalar, MatrixType::Traits::RowsAtCompileTime, MatrixType::Traits::RowsAtCompileTime>
::random(rows, rows);
VectorType v1 = VectorType::random(rows),