Merged eigen/eigen into default

This commit is contained in:
Nicolas Mellado 2015-07-11 19:33:43 +02:00
commit bc40eb745d
17 changed files with 435 additions and 129 deletions

View File

@ -69,6 +69,20 @@ public:
/** \returns a read-write reference to the rotation angle */
inline Scalar& angle() { return m_angle; }
/** \returns the rotation angle in [0,2pi] */
inline Scalar smallestPositiveAngle() const {
Scalar tmp = fmod(m_angle,Scalar(2)*EIGEN_PI);
return tmp<Scalar(0) ? tmp + Scalar(2)*EIGEN_PI : tmp;
}
/** \returns the rotation angle in [-pi,pi] */
inline Scalar smallestAngle() const {
Scalar tmp = fmod(m_angle,Scalar(2)*EIGEN_PI);
if(tmp>Scalar(EIGEN_PI)) tmp -= Scalar(2)*Scalar(EIGEN_PI);
else if(tmp<-Scalar(EIGEN_PI)) tmp += Scalar(2)*Scalar(EIGEN_PI);
return tmp;
}
/** \returns the inverse rotation */
inline Rotation2D inverse() const { return Rotation2D(-m_angle); }
@ -93,7 +107,10 @@ public:
* parameter \a t. It is in fact equivalent to a linear interpolation.
*/
inline Rotation2D slerp(const Scalar& t, const Rotation2D& other) const
{ return Rotation2D(m_angle * (1-t) + other.angle() * t); }
{
Scalar dist = Rotation2D(other.m_angle-m_angle).smallestAngle();
return Rotation2D(m_angle + dist*t);
}
/** \returns \c *this with scalar type casted to \a NewScalarType
*
@ -119,6 +136,7 @@ public:
* \sa MatrixBase::isApprox() */
bool isApprox(const Rotation2D& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
{ return internal::isApprox(m_angle,other.m_angle, prec); }
};
/** \ingroup Geometry_Module

View File

@ -165,7 +165,7 @@ void sparselu_gemm(Index m, Index n, Index d, const Scalar* A, Index lda, const
Bc1 += RK;
} // peeled loop on k
} // peeled loop on the columns j
// process the last column (we now perform a matrux-vector product)
// process the last column (we now perform a matrix-vector product)
if((n-n_end)>0)
{
const Scalar* Bc0 = B+(n-1)*ldb;

View File

@ -408,7 +408,24 @@ template<typename Scalar, int Mode, int Options> void transformations()
VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(),r2d1);
Rotation2D<double> r2d1d = r2d1.template cast<double>();
VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(),r2d1);
for(int k=0; k<100; ++k)
{
Scalar angle = internal::random<Scalar>(-100,100);
Rotation2D<Scalar> rot2(angle);
VERIFY( rot2.smallestPositiveAngle() >= 0 );
VERIFY( rot2.smallestPositiveAngle() < Scalar(2)*Scalar(EIGEN_PI) );
VERIFY_IS_APPROX( std::cos(rot2.smallestPositiveAngle()), std::cos(rot2.angle()) );
VERIFY_IS_APPROX( std::sin(rot2.smallestPositiveAngle()), std::sin(rot2.angle()) );
VERIFY( rot2.smallestAngle() >= -Scalar(EIGEN_PI) );
VERIFY( rot2.smallestAngle() <= Scalar(EIGEN_PI) );
VERIFY_IS_APPROX( std::cos(rot2.smallestAngle()), std::cos(rot2.angle()) );
VERIFY_IS_APPROX( std::sin(rot2.smallestAngle()), std::sin(rot2.angle()) );
}
s0 = internal::random<Scalar>(-100,100);
s1 = internal::random<Scalar>(-100,100);
Rotation2D<Scalar> R0(s0), R1(s1);
t20 = Translation2(v20) * (R0 * Eigen::Scaling(s0));
@ -420,9 +437,23 @@ template<typename Scalar, int Mode, int Options> void transformations()
VERIFY_IS_APPROX(t20,t21);
VERIFY_IS_APPROX(s0, (R0.slerp(0, R1)).angle());
VERIFY_IS_APPROX(s1, (R0.slerp(1, R1)).angle());
VERIFY_IS_APPROX(s0, (R0.slerp(0.5, R0)).angle());
VERIFY_IS_APPROX(Scalar(0), (R0.slerp(0.5, R0.inverse())).angle());
VERIFY_IS_APPROX(R1.smallestPositiveAngle(), (R0.slerp(1, R1)).smallestPositiveAngle());
VERIFY_IS_APPROX(R0.smallestPositiveAngle(), (R0.slerp(0.5, R0)).smallestPositiveAngle());
if(std::cos(s0)>0)
VERIFY_IS_MUCH_SMALLER_THAN((R0.slerp(0.5, R0.inverse())).smallestAngle(), Scalar(1));
else
VERIFY_IS_APPROX(Scalar(EIGEN_PI), (R0.slerp(0.5, R0.inverse())).smallestPositiveAngle());
// Check path length
Scalar l = 0;
for(int k=0; k<100; ++k)
{
Scalar a1 = R0.slerp(Scalar(k)/Scalar(100), R1).angle();
Scalar a2 = R0.slerp(Scalar(k+1)/Scalar(100), R1).angle();
l += std::abs(a2-a1);
}
VERIFY(l<=EIGEN_PI);
// check basic features
{

View File

@ -107,7 +107,7 @@ template <typename T, size_t n> class array {
#ifdef EIGEN_HAS_VARIADIC_TEMPLATES
array(std::initializer_list<T> l) {
eigen_assert(l.size() == n);
std::copy(l.begin(), l.end(), values);
internal::smart_copy(l.begin(), l.end(), values);
}
#endif
};

View File

@ -10,6 +10,8 @@
#ifndef EIGEN_CXX11_TENSOR_TENSOR_BASE_H
#define EIGEN_CXX11_TENSOR_TENSOR_BASE_H
// clang-format off
namespace Eigen {
/** \class TensorBase
@ -379,39 +381,28 @@ class TensorBase<Derived, ReadOnlyAccessors>
return TensorPatchOp<const PatchDims, const Derived>(derived(), patch_dims);
}
template <Index Rows, Index Cols> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorImagePatchOp<Rows, Cols, const Derived>
extract_image_patches() const {
return TensorImagePatchOp<Rows, Cols, const Derived>(derived(), Rows, Cols, 1, 1, PADDING_SAME);
}
template <Index Rows, Index Cols> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorImagePatchOp<Rows, Cols, const Derived>
extract_image_patches(const PaddingType padding_type) const {
return TensorImagePatchOp<Rows, Cols, const Derived>(derived(), Rows, Cols, 1, 1, padding_type);
}
template <Index Rows, Index Cols> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorImagePatchOp<Rows, Cols, const Derived>
extract_image_patches(const Index stride, const PaddingType padding_type) const {
return TensorImagePatchOp<Rows, Cols, const Derived>(derived(), Rows, Cols, stride, stride, padding_type);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorImagePatchOp<Dynamic, Dynamic, const Derived>
extract_image_patches(const Index patch_rows, const Index patch_cols,
const Index row_stride = 1, const Index col_stride = 1) const {
extract_image_patches(const Index patch_rows = 1, const Index patch_cols = 1,
const Index row_stride = 1, const Index col_stride = 1,
const Index in_row_stride = 1, const Index in_col_stride = 1,
const PaddingType padding_type = PADDING_SAME, const Scalar padding_value = Scalar(0)) const {
return TensorImagePatchOp<Dynamic, Dynamic, const Derived>(derived(), patch_rows, patch_cols, row_stride, col_stride,
PADDING_SAME);
in_row_stride, in_col_stride, 1, 1, padding_type, padding_value);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorImagePatchOp<Dynamic, Dynamic, const Derived>
extract_image_patches(const Index patch_rows, const Index patch_cols,
const Index row_stride, const Index col_stride,
const PaddingType padding_type) const {
const Index in_row_stride, const Index in_col_stride,
const Index row_inflate_stride, const Index col_inflate_stride,
const Index padding_top, const Index padding_bottom,
const Index padding_left,const Index padding_right,
const Scalar padding_value) const {
return TensorImagePatchOp<Dynamic, Dynamic, const Derived>(derived(), patch_rows, patch_cols, row_stride, col_stride,
padding_type);
in_row_stride, in_col_stride, row_inflate_stride, col_inflate_stride,
padding_top, padding_bottom, padding_left, padding_right, padding_value);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
@ -481,7 +472,7 @@ class TensorBase<Derived, ReadOnlyAccessors>
return TensorStridingOp<const Strides, const Derived>(derived(), strides);
}
// Added support for custom unary and binary operations
// Support for custom unary and binary operations
template <typename CustomUnaryFunc>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorCustomUnaryOp<const CustomUnaryFunc, const Derived> customOp(const CustomUnaryFunc& op) const {

View File

@ -662,7 +662,7 @@ struct TensorContractionEvaluatorBase
// If the layout is RowMajor, we need to reverse the m_dimensions
if (static_cast<int>(Layout) == static_cast<int>(RowMajor)) {
for (int i = 0, j = NumDims - 1; i < j; i++, j--) {
std::swap(m_dimensions[i], m_dimensions[j]);
numext::swap(m_dimensions[i], m_dimensions[j]);
}
}
}

View File

@ -109,6 +109,24 @@ struct TensorEvaluator
const Device& m_device;
};
namespace {
template <typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T loadConstant(const T* address) {
return *address;
}
// Use the texture cache on CUDA devices whenever possible
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350
template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float loadConstant(const float* address) {
return __ldg(address);
}
template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double loadConstant(const double* address) {
return __ldg(address);
}
#endif
}
// Default evaluator for rvalues
template<typename Derived, typename Device>
@ -139,7 +157,7 @@ struct TensorEvaluator<const Derived, Device>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dims; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
if (internal::is_arithmetic<typename internal::remove_const<Scalar>::type>::value && data) {
if (!NumTraits<typename internal::remove_const<Scalar>::type>::RequireInitialization && data) {
m_device.memcpy((void*)data, m_data, m_dims.TotalSize() * sizeof(Scalar));
return false;
}
@ -150,11 +168,7 @@ struct TensorEvaluator<const Derived, Device>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
eigen_assert(m_data);
#ifdef __CUDA_ARCH__
return __ldg(m_data+index);
#else
return m_data[index];
#endif
return loadConstant(m_data+index);
}
template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
@ -167,11 +181,7 @@ struct TensorEvaluator<const Derived, Device>
eigen_assert(m_data);
const Index index = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_dims.IndexOfColMajor(coords)
: m_dims.IndexOfRowMajor(coords);
#ifdef __CUDA_ARCH__
return __ldg(m_data+index);
#else
return m_data[index];
#endif
return loadConstant(m_data+index);
}
EIGEN_DEVICE_FUNC const Scalar* data() const { return m_data; }

View File

@ -109,7 +109,7 @@ struct TensorEvaluator<const TensorForcedEvalOp<ArgType>, Device>
const Index numValues = m_impl.dimensions().TotalSize();
m_buffer = (CoeffReturnType*)m_device.allocate(numValues * sizeof(CoeffReturnType));
// Should initialize the memory in case we're dealing with non POD types.
if (!internal::is_arithmetic<CoeffReturnType>::value) {
if (NumTraits<CoeffReturnType>::RequireInitialization) {
for (Index i = 0; i < numValues; ++i) {
new(m_buffer+i) CoeffReturnType();
}

View File

@ -51,9 +51,9 @@ template<typename XprType> class TensorForcedEvalOp;
template<typename ExpressionType, typename DeviceType> class TensorDevice;
template<typename Derived, typename Device> struct TensorEvaluator;
class DefaultDevice;
class ThreadPoolDevice;
class GpuDevice;
struct DefaultDevice;
struct ThreadPoolDevice;
struct GpuDevice;
namespace internal {

View File

@ -387,6 +387,58 @@ template <> class UniformRandomGenerator<double> {
mutable curandStatePhilox4_32_10_t m_state;
};
template <> class UniformRandomGenerator<std::complex<float> > {
public:
static const bool PacketAccess = false;
__device__ UniformRandomGenerator(bool deterministic = true) : m_deterministic(deterministic) {
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
const int seed = deterministic ? 0 : get_random_seed();
curand_init(seed, tid, 0, &m_state);
}
__device__ UniformRandomGenerator(const UniformRandomGenerator& other) {
m_deterministic = other.m_deterministic;
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
const int seed = m_deterministic ? 0 : get_random_seed();
curand_init(seed, tid, 0, &m_state);
}
template<typename Index>
__device__ std::complex<float> operator()(Index, Index = 0) const {
float4 vals = curand_uniform4(&m_state);
return std::complex<float>(vals.x, vals.y);
}
private:
bool m_deterministic;
mutable curandStatePhilox4_32_10_t m_state;
};
template <> class UniformRandomGenerator<std::complex<double> > {
public:
static const bool PacketAccess = false;
__device__ UniformRandomGenerator(bool deterministic = true) : m_deterministic(deterministic) {
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
const int seed = deterministic ? 0 : get_random_seed();
curand_init(seed, tid, 0, &m_state);
}
__device__ UniformRandomGenerator(const UniformRandomGenerator& other) {
m_deterministic = other.m_deterministic;
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
const int seed = m_deterministic ? 0 : get_random_seed();
curand_init(seed, tid, 0, &m_state);
}
template<typename Index>
__device__ std::complex<double> operator()(Index, Index = 0) const {
double2 vals = curand_uniform2_double(&m_state);
return std::complex<double>(vals.x, vals.y);
}
private:
bool m_deterministic;
mutable curandStatePhilox4_32_10_t m_state;
};
#endif
@ -489,6 +541,58 @@ template <> class NormalRandomGenerator<double> {
mutable curandStatePhilox4_32_10_t m_state;
};
template <> class NormalRandomGenerator<std::complex<float> > {
public:
static const bool PacketAccess = false;
__device__ NormalRandomGenerator(bool deterministic = true) : m_deterministic(deterministic) {
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
const int seed = deterministic ? 0 : get_random_seed();
curand_init(seed, tid, 0, &m_state);
}
__device__ NormalRandomGenerator(const NormalRandomGenerator& other) {
m_deterministic = other.m_deterministic;
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
const int seed = m_deterministic ? 0 : get_random_seed();
curand_init(seed, tid, 0, &m_state);
}
template<typename Index>
__device__ std::complex<float> operator()(Index, Index = 0) const {
float4 vals = curand_normal4(&m_state);
return std::complex<float>(vals.x, vals.y);
}
private:
bool m_deterministic;
mutable curandStatePhilox4_32_10_t m_state;
};
template <> class NormalRandomGenerator<std::complex<double> > {
public:
static const bool PacketAccess = false;
__device__ NormalRandomGenerator(bool deterministic = true) : m_deterministic(deterministic) {
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
const int seed = deterministic ? 0 : get_random_seed();
curand_init(seed, tid, 0, &m_state);
}
__device__ NormalRandomGenerator(const NormalRandomGenerator& other) {
m_deterministic = other.m_deterministic;
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
const int seed = m_deterministic ? 0 : get_random_seed();
curand_init(seed, tid, 0, &m_state);
}
template<typename Index>
__device__ std::complex<double> operator()(Index, Index = 0) const {
double2 vals = curand_normal2_double(&m_state);
return std::complex<double>(vals.x, vals.y);
}
private:
bool m_deterministic;
mutable curandStatePhilox4_32_10_t m_state;
};
#else
template <typename T> class NormalRandomGenerator {

View File

@ -30,7 +30,7 @@ namespace internal {
template<DenseIndex Rows, DenseIndex Cols, typename XprType>
struct traits<TensorImagePatchOp<Rows, Cols, XprType> > : public traits<XprType>
{
typedef typename XprType::Scalar Scalar;
typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
typedef traits<XprType> XprTraits;
typedef typename packet_traits<Scalar>::type Packet;
typedef typename XprTraits::StorageKind StorageKind;
@ -70,10 +70,30 @@ class TensorImagePatchOp : public TensorBase<TensorImagePatchOp<Rows, Cols, XprT
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType& expr, DenseIndex patch_rows, DenseIndex patch_cols,
DenseIndex row_strides, DenseIndex col_strides,
PaddingType padding_type)
DenseIndex in_row_strides, DenseIndex in_col_strides,
DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
PaddingType padding_type, Scalar padding_value)
: m_xpr(expr), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
m_row_strides(row_strides), m_col_strides(col_strides),
m_padding_type(padding_type) {}
m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
m_padding_explicit(false), m_padding_top(0), m_padding_bottom(0), m_padding_left(0), m_padding_right(0),
m_padding_type(padding_type), m_padding_value(padding_value) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType& expr, DenseIndex patch_rows, DenseIndex patch_cols,
DenseIndex row_strides, DenseIndex col_strides,
DenseIndex in_row_strides, DenseIndex in_col_strides,
DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
DenseIndex padding_top, DenseIndex padding_bottom,
DenseIndex padding_left, DenseIndex padding_right,
Scalar padding_value)
: m_xpr(expr), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
m_row_strides(row_strides), m_col_strides(col_strides),
m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
m_padding_explicit(true), m_padding_top(padding_top), m_padding_bottom(padding_bottom),
m_padding_left(padding_left), m_padding_right(padding_right),
m_padding_type(PADDING_VALID), m_padding_value(padding_value) {}
EIGEN_DEVICE_FUNC
DenseIndex patch_rows() const { return m_patch_rows; }
@ -84,7 +104,27 @@ class TensorImagePatchOp : public TensorBase<TensorImagePatchOp<Rows, Cols, XprT
EIGEN_DEVICE_FUNC
DenseIndex col_strides() const { return m_col_strides; }
EIGEN_DEVICE_FUNC
DenseIndex in_row_strides() const { return m_in_row_strides; }
EIGEN_DEVICE_FUNC
DenseIndex in_col_strides() const { return m_in_col_strides; }
EIGEN_DEVICE_FUNC
DenseIndex row_inflate_strides() const { return m_row_inflate_strides; }
EIGEN_DEVICE_FUNC
DenseIndex col_inflate_strides() const { return m_col_inflate_strides; }
EIGEN_DEVICE_FUNC
bool padding_explicit() const { return m_padding_explicit; }
EIGEN_DEVICE_FUNC
DenseIndex padding_top() const { return m_padding_top; }
EIGEN_DEVICE_FUNC
DenseIndex padding_bottom() const { return m_padding_bottom; }
EIGEN_DEVICE_FUNC
DenseIndex padding_left() const { return m_padding_left; }
EIGEN_DEVICE_FUNC
DenseIndex padding_right() const { return m_padding_right; }
EIGEN_DEVICE_FUNC
PaddingType padding_type() const { return m_padding_type; }
EIGEN_DEVICE_FUNC
Scalar padding_value() const { return m_padding_value; }
EIGEN_DEVICE_FUNC
const typename internal::remove_all<typename XprType::Nested>::type&
@ -96,10 +136,19 @@ class TensorImagePatchOp : public TensorBase<TensorImagePatchOp<Rows, Cols, XprT
const DenseIndex m_patch_cols;
const DenseIndex m_row_strides;
const DenseIndex m_col_strides;
const DenseIndex m_in_row_strides;
const DenseIndex m_in_col_strides;
const DenseIndex m_row_inflate_strides;
const DenseIndex m_col_inflate_strides;
const bool m_padding_explicit;
const DenseIndex m_padding_top;
const DenseIndex m_padding_bottom;
const DenseIndex m_padding_left;
const DenseIndex m_padding_right;
const PaddingType m_padding_type;
const Scalar m_padding_value;
};
// Eval as rvalue
template<DenseIndex Rows, DenseIndex Cols, typename ArgType, typename Device>
struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
@ -109,7 +158,10 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
static const int NumDims = NumInputDims + 1;
typedef DSizes<Index, NumDims> Dimensions;
typedef typename XprType::Scalar Scalar;
typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
typedef TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>,
Device> Self;
typedef TensorEvaluator<ArgType, Device> Impl;
enum {
IsAligned = false,
@ -123,13 +175,17 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
{
EIGEN_STATIC_ASSERT(NumDims >= 4, YOU_MADE_A_PROGRAMMING_MISTAKE);
m_paddingValue = op.padding_value();
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
// Caches a few variables.
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
m_inputDepth = input_dims[0];
m_inputRows = input_dims[1];
m_inputCols = input_dims[2];
} else {
m_inputDepth = input_dims[NumInputDims-1];
m_inputRows = input_dims[NumInputDims-2];
m_inputCols = input_dims[NumInputDims-3];
}
@ -137,27 +193,57 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
m_row_strides = op.row_strides();
m_col_strides = op.col_strides();
// We only support same strides for both dimensions and square patches.
eigen_assert(m_row_strides == m_col_strides);
// Input strides and effective input/patch size
m_in_row_strides = op.in_row_strides();
m_in_col_strides = op.in_col_strides();
m_row_inflate_strides = op.row_inflate_strides();
m_col_inflate_strides = op.col_inflate_strides();
// The "effective" input rows and input cols are the input rows and cols
// after inflating them with zeros.
// For examples, a 2x3 matrix with row_inflate_strides and
// col_inflate_strides of 2 comes from:
// A B C
// D E F
//
// to a matrix is 3 x 5:
//
// A . B . C
// . . . . .
// D . E . F
switch (op.padding_type()) {
case PADDING_VALID:
m_outputRows = numext::ceil((m_inputRows - op.patch_rows() + 1.f) / static_cast<float>(m_row_strides));
m_outputCols = numext::ceil((m_inputCols - op.patch_cols() + 1.f) / static_cast<float>(m_col_strides));
// Calculate the padding
m_rowPaddingTop = ((m_outputRows - 1) * m_row_strides + op.patch_rows() - m_inputRows) / 2;
m_colPaddingLeft = ((m_outputCols - 1) * m_col_strides + op.patch_cols() - m_inputCols) / 2;
break;
case PADDING_SAME:
m_outputRows = numext::ceil(m_inputRows / static_cast<float>(m_row_strides));
m_outputCols = numext::ceil(m_inputCols / static_cast<float>(m_col_strides));
// Calculate the padding
m_rowPaddingTop = ((m_outputRows - 1) * m_row_strides + op.patch_rows() - m_inputRows) / 2;
m_colPaddingLeft = ((m_outputCols - 1) * m_col_strides + op.patch_cols() - m_inputCols) / 2;
break;
default:
eigen_assert(false && "unexpected padding");
m_input_rows_eff = (m_inputRows - 1) * m_row_inflate_strides + 1;
m_input_cols_eff = (m_inputCols - 1) * m_col_inflate_strides + 1;
m_patch_rows_eff = op.patch_rows() + (op.patch_rows() - 1) * (m_in_row_strides - 1);
m_patch_cols_eff = op.patch_cols() + (op.patch_cols() - 1) * (m_in_col_strides - 1);
if (op.padding_explicit()) {
m_outputRows = numext::ceil((m_input_rows_eff + op.padding_top() + op.padding_bottom() - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
m_outputCols = numext::ceil((m_input_cols_eff + op.padding_left() + op.padding_right() - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
m_rowPaddingTop = op.padding_top();
m_colPaddingLeft = op.padding_left();
} else {
// Computing padding from the type
switch (op.padding_type()) {
case PADDING_VALID:
m_outputRows = numext::ceil((m_input_rows_eff - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
m_outputCols = numext::ceil((m_input_cols_eff - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
// Calculate the padding
m_rowPaddingTop = ((m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff) / 2;
m_colPaddingLeft = ((m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff) / 2;
break;
case PADDING_SAME:
m_outputRows = numext::ceil(m_input_rows_eff / static_cast<float>(m_row_strides));
m_outputCols = numext::ceil(m_input_cols_eff / static_cast<float>(m_col_strides));
// Calculate the padding
m_rowPaddingTop = ((m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff) / 2;
m_colPaddingLeft = ((m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff) / 2;
break;
default:
eigen_assert(false && "unexpected padding");
}
}
eigen_assert(m_outputRows > 0);
eigen_assert(m_outputCols > 0);
// Dimensions for result of extraction.
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
@ -202,26 +288,24 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
}
// Strides for navigating through the input tensor.
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
m_rowInputStride = input_dims[0];
m_colInputStride = input_dims[0] * input_dims[1];
m_patchInputStride = input_dims[0] * input_dims[1] * input_dims[2];
} else {
m_rowInputStride = input_dims[NumInputDims-1];
m_colInputStride = input_dims[NumInputDims-1] * input_dims[NumInputDims-2];
m_patchInputStride = input_dims[NumInputDims-1] * input_dims[NumInputDims-2] * input_dims[NumInputDims-3];
}
m_rowInputStride = m_inputDepth;
m_colInputStride = m_inputDepth * m_inputRows;
m_patchInputStride = m_inputDepth * m_inputRows * m_inputCols;
// Fast representations of different variables.
m_fastOtherStride = internal::TensorIntDivisor<Index>(m_otherStride);
m_fastPatchStride = internal::TensorIntDivisor<Index>(m_patchStride);
m_fastColStride = internal::TensorIntDivisor<Index>(m_colStride);
m_fastInputRowStride = internal::TensorIntDivisor<Index>(m_row_inflate_strides);
m_fastInputColStride = internal::TensorIntDivisor<Index>(m_col_inflate_strides);
m_fastInputColsEff = internal::TensorIntDivisor<Index>(m_input_cols_eff);
// Number of patches in the width dimension.
m_fastOutputRows = internal::TensorIntDivisor<Index>(m_outputRows);
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
m_fastDimZero = internal::TensorIntDivisor<Index>(m_dimensions[0]);
m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[0]);
} else {
m_fastDimZero = internal::TensorIntDivisor<Index>(m_dimensions[NumDims-1]);
m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[NumDims-1]);
}
}
@ -244,33 +328,36 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
// Patch index corresponding to the passed in index.
const Index patchIndex = index / m_fastPatchStride;
// Find the offset of the element wrt the location of the first element.
const Index patchOffset = (index - patchIndex * m_patchStride) / m_fastDimZero;
const Index patchOffset = (index - patchIndex * m_patchStride) / m_fastOutputDepth;
// Other ways to index this element.
const Index otherIndex = (NumDims == 4) ? 0 : index / m_fastOtherStride;
const Index patch2DIndex = (NumDims == 4) ? patchIndex : (index - otherIndex * m_otherStride) / m_fastPatchStride;
// Calculate col index in the input original tensor.
const Index colIndex = patch2DIndex / m_fastOutputRows;
const Index colOffset = patchOffset / m_fastColStride;
// Calculate col index in the input original tensor.
const Index inputCol = colIndex * m_col_strides + colOffset - m_colPaddingLeft;
if (inputCol < 0 || inputCol >= m_inputCols) {
return Scalar(0);
const Index inputCol = colIndex * m_col_strides + colOffset * m_in_col_strides - m_colPaddingLeft;
const Index origInputCol = (m_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInputColStride) : 0);
if (inputCol < 0 || inputCol >= m_input_cols_eff ||
((m_col_inflate_strides != 1) && (inputCol != origInputCol * m_col_inflate_strides))) {
return Scalar(m_paddingValue);
}
const Index rowIndex = patch2DIndex - colIndex * m_outputRows;
const Index rowOffset = patchOffset - colOffset * m_colStride;
// Calculate row index in the original input tensor.
const Index inputRow = rowIndex * m_row_strides + rowOffset - m_rowPaddingTop;
if (inputRow < 0 || inputRow >= m_inputRows) {
return Scalar(0);
const Index rowIndex = patch2DIndex - colIndex * m_outputRows;
const Index rowOffset = patchOffset - colOffset * m_colStride;
const Index inputRow = rowIndex * m_row_strides + rowOffset * m_in_row_strides - m_rowPaddingTop;
const Index origInputRow = (m_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInputRowStride) : 0);
if (inputRow < 0 || inputRow >= m_input_rows_eff ||
((m_row_inflate_strides != 1) && (inputRow != origInputRow * m_row_inflate_strides))) {
return Scalar(m_paddingValue);
}
const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
const Index depth = index - (index / m_fastDimZero) * m_dimensions[depth_index];
const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
const Index inputIndex = depth + inputRow * m_rowInputStride + inputCol * m_colInputStride + otherIndex * m_patchInputStride;
const Index inputIndex = depth + origInputRow * m_rowInputStride + origInputCol * m_colInputStride + otherIndex * m_patchInputStride;
return m_impl.coeff(inputIndex);
}
@ -281,6 +368,10 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
eigen_assert(index+packetSize-1 < dimensions().TotalSize());
if (m_in_row_strides != 1 || m_in_col_strides != 1 || m_row_inflate_strides != 1 || m_col_inflate_strides != 1) {
return packetWithPossibleZero(index);
}
const Index indices[2] = {index, index + packetSize - 1};
const Index patchIndex = indices[0] / m_fastPatchStride;
if (patchIndex != indices[1] / m_fastPatchStride) {
@ -290,8 +381,8 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
eigen_assert(otherIndex == indices[1] / m_fastOtherStride);
// Find the offset of the element wrt the location of the first element.
const Index patchOffsets[2] = {(indices[0] - patchIndex * m_patchStride) / m_fastDimZero,
(indices[1] - patchIndex * m_patchStride) / m_fastDimZero};
const Index patchOffsets[2] = {(indices[0] - patchIndex * m_patchStride) / m_fastOutputDepth,
(indices[1] - patchIndex * m_patchStride) / m_fastOutputDepth};
const Index patch2DIndex = (NumDims == 4) ? patchIndex : (indices[0] - otherIndex * m_otherStride) / m_fastPatchStride;
eigen_assert(patch2DIndex == (indices[1] - otherIndex * m_otherStride) / m_fastPatchStride);
@ -303,8 +394,7 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
const Index inputCols[2] = {colIndex * m_col_strides + colOffsets[0] -
m_colPaddingLeft, colIndex * m_col_strides + colOffsets[1] - m_colPaddingLeft};
if (inputCols[1] < 0 || inputCols[0] >= m_inputCols) {
// all zeros
return internal::pset1<PacketReturnType>(Scalar(0));
return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
}
if (inputCols[0] == inputCols[1]) {
@ -316,14 +406,13 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
m_rowPaddingTop, rowIndex * m_row_strides + rowOffsets[1] - m_rowPaddingTop};
if (inputRows[1] < 0 || inputRows[0] >= m_inputRows) {
// all zeros
return internal::pset1<PacketReturnType>(Scalar(0));
return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
}
if (inputRows[0] >= 0 && inputRows[1] < m_inputRows) {
// no padding
const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
const Index depth = index - (index / m_fastDimZero) * m_dimensions[depth_index];
const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
const Index inputIndex = depth + inputRows[0] * m_rowInputStride + inputCols[0] * m_colInputStride + otherIndex * m_patchInputStride;
return m_impl.template packet<Unaligned>(inputIndex);
}
@ -342,6 +431,10 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
Index outputCols() const { return m_outputCols; }
Index userRowStride() const { return m_row_strides; }
Index userColStride() const { return m_col_strides; }
Index userInRowStride() const { return m_in_row_strides; }
Index userInColStride() const { return m_in_col_strides; }
Index rowInflateStride() const { return m_row_inflate_strides; }
Index colInflateStride() const { return m_col_inflate_strides; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(const array<Index, NumDims>& coords) const
{
@ -350,24 +443,30 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
// 0: d, 1: patch_rows, 2: patch_cols, 3: number of patches, 4: number of batches
// RowMajor
// 0: number of batches, 1: number of patches, 2: patch_cols , 3: patch_rows, 4: d
const Index patchIndex = coords[static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 3 : 1];
const Index patch2DIndex = coords[static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 3 : 1];
array<Index, NumDims-1> inputCoords;
Index input_col_idx = patch2DIndex / m_fastInputColsEff;
Index inputCol = input_col_idx + coords[1] * m_in_row_strides - m_rowPaddingTop;
Index inputRow = patch2DIndex - input_col_idx * m_input_cols_eff + coords[2] * m_in_col_strides - m_colPaddingLeft;
const Index origInputCol = (m_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInputColStride) : 0);
const Index origInputRow = (m_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInputRowStride) : 0);
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
inputCoords[0] = coords[0]; // depth
inputCoords[1] = patchIndex / m_inputCols + coords[1] - m_rowPaddingTop;
inputCoords[2] = patchIndex - patchIndex / m_inputCols * m_inputCols + coords[2] - m_colPaddingLeft;
inputCoords[1] = origInputCol;
inputCoords[2] = origInputRow;
inputCoords[3] = coords[4]; // batch
} else {
inputCoords[3] = coords[4]; // depth
inputCoords[2] = patchIndex / m_inputCols + coords[3] - m_rowPaddingTop;
inputCoords[1] = patchIndex - patchIndex / m_inputCols * m_inputCols + coords[2] - m_colPaddingLeft;
inputCoords[2] = origInputCol;
inputCoords[1] = origInputRow;
inputCoords[0] = coords[0]; // batch
}
// If the computed coordinates are outside the original image perimeter, return 0.
if (inputCoords[1] < 0 || inputCoords[1] >= m_inputRows ||
inputCoords[2] < 0 || inputCoords[2] >= m_inputCols) {
return Scalar(0);
if (inputCol < 0 || inputCol >= m_input_cols_eff || inputRow < 0 || inputRow >= m_input_rows_eff ||
((m_col_inflate_strides != 1) && (inputCol != origInputCol * m_col_inflate_strides)) ||
((m_row_inflate_strides != 1) && (inputRow != origInputRow * m_row_inflate_strides))) {
return Scalar(m_paddingValue);
}
if (TensorEvaluator<ArgType, Device>::CoordAccess) {
return m_impl.coeff(inputCoords);
@ -409,14 +508,29 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
Index m_colStride;
Index m_row_strides;
Index m_col_strides;
Index m_in_row_strides;
Index m_in_col_strides;
Index m_row_inflate_strides;
Index m_col_inflate_strides;
Index m_input_rows_eff;
Index m_input_cols_eff;
Index m_patch_rows_eff;
Index m_patch_cols_eff;
internal::TensorIntDivisor<Index> m_fastOtherStride;
internal::TensorIntDivisor<Index> m_fastPatchStride;
internal::TensorIntDivisor<Index> m_fastColStride;
internal::TensorIntDivisor<Index> m_fastInputRowStride;
internal::TensorIntDivisor<Index> m_fastInputColStride;
internal::TensorIntDivisor<Index> m_fastInputColsEff;
Index m_rowInputStride;
Index m_colInputStride;
Index m_patchInputStride;
Index m_inputDepth;
Index m_inputRows;
Index m_inputCols;
@ -427,7 +541,9 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
Index m_colPaddingLeft;
internal::TensorIntDivisor<Index> m_fastOutputRows;
internal::TensorIntDivisor<Index> m_fastDimZero;
internal::TensorIntDivisor<Index> m_fastOutputDepth;
Scalar m_paddingValue;
TensorEvaluator<ArgType, Device> m_impl;
};

View File

@ -75,7 +75,7 @@ struct TensorIntDivisor {
eigen_assert(numerator >= 0);
eigen_assert(static_cast<unsigned long long>(numerator) <= (1ull<<N) - 1);
uint32_t t1 = (multiplier * numerator) >> 32;
uint32_t t1 = (multiplier * numerator) >> N;
uint32_t t = (static_cast<uint32_t>(numerator) - t1) >> shift1;
return (t1 + t) >> shift2;
}

View File

@ -366,7 +366,7 @@ struct TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Devi
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
m_impl.evalSubExprsIfNeeded(NULL);
if (internal::is_arithmetic<typename internal::remove_const<Scalar>::type>::value && data && m_impl.data()) {
if (!NumTraits<typename internal::remove_const<Scalar>::type>::RequireInitialization && data && m_impl.data()) {
Index contiguous_values = 1;
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
for (int i = 0; i < NumDims; ++i) {

View File

@ -95,7 +95,7 @@ class TensorStorage<T, DSizes<IndexType, NumIndices_>, Options_>
EIGEN_DEVICE_FUNC ~TensorStorage() { internal::conditional_aligned_delete_auto<T,(Options_&DontAlign)==0>(m_data, internal::array_prod(m_dimensions)); }
EIGEN_DEVICE_FUNC void swap(Self& other)
{ std::swap(m_data,other.m_data); std::swap(m_dimensions,other.m_dimensions); }
{ numext::swap(m_data,other.m_data); numext::swap(m_dimensions,other.m_dimensions); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const {return m_dimensions;}

View File

@ -144,5 +144,6 @@ if(EIGEN_TEST_CXX11)
# ei_add_test(cxx11_tensor_cuda "-std=c++0x")
# ei_add_test(cxx11_tensor_contract_cuda "-std=c++0x")
# ei_add_test(cxx11_tensor_reduction_cuda "-std=c++0x")
# ei_add_test(cxx11_tensor_random_cuda "-std=c++0x")
endif()

View File

@ -25,7 +25,7 @@ static void test_simple_patch()
// Single pixel patch: ColMajor
Tensor<float, 5> single_pixel_patch;
single_pixel_patch = tensor.extract_image_patches<1, 1>();
single_pixel_patch = tensor.extract_image_patches(1, 1);
VERIFY_IS_EQUAL(single_pixel_patch.dimension(0), 2);
VERIFY_IS_EQUAL(single_pixel_patch.dimension(1), 1);
VERIFY_IS_EQUAL(single_pixel_patch.dimension(2), 1);
@ -34,7 +34,7 @@ static void test_simple_patch()
// Single pixel patch: RowMajor
Tensor<float, 5, RowMajor> single_pixel_patch_row_major;
single_pixel_patch_row_major = tensor_row_major.extract_image_patches<1, 1>();
single_pixel_patch_row_major = tensor_row_major.extract_image_patches(1, 1);
VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(0), 7);
VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(1), 3*5);
VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(2), 1);
@ -64,7 +64,7 @@ static void test_simple_patch()
// Entire image patch: ColMajor
Tensor<float, 5> entire_image_patch;
entire_image_patch = tensor.extract_image_patches<3, 5>();
entire_image_patch = tensor.extract_image_patches(3, 5);
VERIFY_IS_EQUAL(entire_image_patch.dimension(0), 2);
VERIFY_IS_EQUAL(entire_image_patch.dimension(1), 3);
VERIFY_IS_EQUAL(entire_image_patch.dimension(2), 5);
@ -73,7 +73,7 @@ static void test_simple_patch()
// Entire image patch: RowMajor
Tensor<float, 5, RowMajor> entire_image_patch_row_major;
entire_image_patch_row_major = tensor_row_major.extract_image_patches<3, 5>();
entire_image_patch_row_major = tensor_row_major.extract_image_patches(3, 5);
VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(0), 7);
VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(1), 3*5);
VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(2), 5);
@ -118,7 +118,7 @@ static void test_simple_patch()
// 2D patch: ColMajor
Tensor<float, 5> twod_patch;
twod_patch = tensor.extract_image_patches<2, 2>();
twod_patch = tensor.extract_image_patches(2, 2);
VERIFY_IS_EQUAL(twod_patch.dimension(0), 2);
VERIFY_IS_EQUAL(twod_patch.dimension(1), 2);
VERIFY_IS_EQUAL(twod_patch.dimension(2), 2);
@ -127,7 +127,7 @@ static void test_simple_patch()
// 2D patch: RowMajor
Tensor<float, 5, RowMajor> twod_patch_row_major;
twod_patch_row_major = tensor_row_major.extract_image_patches<2, 2>();
twod_patch_row_major = tensor_row_major.extract_image_patches(2, 2);
VERIFY_IS_EQUAL(twod_patch_row_major.dimension(0), 7);
VERIFY_IS_EQUAL(twod_patch_row_major.dimension(1), 3*5);
VERIFY_IS_EQUAL(twod_patch_row_major.dimension(2), 2);
@ -194,7 +194,7 @@ static void test_patch_padding_valid()
tensor.data()[i] = i + 1;
}
// ColMajor
Tensor<float, 5> result = tensor.extract_image_patches(ksize, ksize, stride, stride, PADDING_VALID);
Tensor<float, 5> result = tensor.extract_image_patches(ksize, ksize, stride, stride, 1, 1, PADDING_VALID);
VERIFY_IS_EQUAL(result.dimension(0), input_depth); // depth
VERIFY_IS_EQUAL(result.dimension(1), ksize); // kernel rows
@ -209,7 +209,7 @@ static void test_patch_padding_valid()
VERIFY_IS_EQUAL(tensor.dimension(2), tensor_row_major.dimension(1));
VERIFY_IS_EQUAL(tensor.dimension(3), tensor_row_major.dimension(0));
Tensor<float, 5, RowMajor> result_row_major = tensor_row_major.extract_image_patches(ksize, ksize, stride, stride, PADDING_VALID);
Tensor<float, 5, RowMajor> result_row_major = tensor_row_major.extract_image_patches(ksize, ksize, stride, stride, 1, 1, PADDING_VALID);
VERIFY_IS_EQUAL(result.dimension(0), result_row_major.dimension(4));
VERIFY_IS_EQUAL(result.dimension(1), result_row_major.dimension(3));
VERIFY_IS_EQUAL(result.dimension(2), result_row_major.dimension(2));
@ -267,7 +267,7 @@ static void test_patch_padding_valid_same_value()
// ColMajor
Tensor<float, 4> tensor(input_depth, input_rows, input_cols, input_batches);
tensor = tensor.constant(11.0f);
Tensor<float, 5> result = tensor.extract_image_patches(ksize, ksize, stride, stride, PADDING_VALID);
Tensor<float, 5> result = tensor.extract_image_patches(ksize, ksize, stride, stride, 1, 1, PADDING_VALID);
VERIFY_IS_EQUAL(result.dimension(0), input_depth); // depth
VERIFY_IS_EQUAL(result.dimension(1), ksize); // kernel rows
@ -282,7 +282,7 @@ static void test_patch_padding_valid_same_value()
VERIFY_IS_EQUAL(tensor.dimension(2), tensor_row_major.dimension(1));
VERIFY_IS_EQUAL(tensor.dimension(3), tensor_row_major.dimension(0));
Tensor<float, 5, RowMajor> result_row_major = tensor_row_major.extract_image_patches(ksize, ksize, stride, stride, PADDING_VALID);
Tensor<float, 5, RowMajor> result_row_major = tensor_row_major.extract_image_patches(ksize, ksize, stride, stride, 1, 1, PADDING_VALID);
VERIFY_IS_EQUAL(result.dimension(0), result_row_major.dimension(4));
VERIFY_IS_EQUAL(result.dimension(1), result_row_major.dimension(3));
VERIFY_IS_EQUAL(result.dimension(2), result_row_major.dimension(2));
@ -416,7 +416,7 @@ static void test_patch_no_extra_dim()
// Single pixel patch: ColMajor
Tensor<float, 4> single_pixel_patch;
single_pixel_patch = tensor.extract_image_patches<1, 1>();
single_pixel_patch = tensor.extract_image_patches(1, 1);
VERIFY_IS_EQUAL(single_pixel_patch.dimension(0), 2);
VERIFY_IS_EQUAL(single_pixel_patch.dimension(1), 1);
VERIFY_IS_EQUAL(single_pixel_patch.dimension(2), 1);
@ -424,7 +424,7 @@ static void test_patch_no_extra_dim()
// Single pixel patch: RowMajor
Tensor<float, 4, RowMajor> single_pixel_patch_row_major;
single_pixel_patch_row_major = tensor_row_major.extract_image_patches<1, 1>();
single_pixel_patch_row_major = tensor_row_major.extract_image_patches(1, 1);
VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(0), 3*5);
VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(1), 1);
VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(2), 1);
@ -451,7 +451,7 @@ static void test_patch_no_extra_dim()
// Entire image patch: ColMajor
Tensor<float, 4> entire_image_patch;
entire_image_patch = tensor.extract_image_patches<3, 5>();
entire_image_patch = tensor.extract_image_patches(3, 5);
VERIFY_IS_EQUAL(entire_image_patch.dimension(0), 2);
VERIFY_IS_EQUAL(entire_image_patch.dimension(1), 3);
VERIFY_IS_EQUAL(entire_image_patch.dimension(2), 5);
@ -459,7 +459,7 @@ static void test_patch_no_extra_dim()
// Entire image patch: RowMajor
Tensor<float, 4, RowMajor> entire_image_patch_row_major;
entire_image_patch_row_major = tensor_row_major.extract_image_patches<3, 5>();
entire_image_patch_row_major = tensor_row_major.extract_image_patches(3, 5);
VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(0), 3*5);
VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(1), 5);
VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(2), 3);
@ -499,7 +499,7 @@ static void test_patch_no_extra_dim()
// 2D patch: ColMajor
Tensor<float, 4> twod_patch;
twod_patch = tensor.extract_image_patches<2, 2>();
twod_patch = tensor.extract_image_patches(2, 2);
VERIFY_IS_EQUAL(twod_patch.dimension(0), 2);
VERIFY_IS_EQUAL(twod_patch.dimension(1), 2);
VERIFY_IS_EQUAL(twod_patch.dimension(2), 2);
@ -507,7 +507,7 @@ static void test_patch_no_extra_dim()
// 2D patch: RowMajor
Tensor<float, 4, RowMajor> twod_patch_row_major;
twod_patch_row_major = tensor_row_major.extract_image_patches<2, 2>();
twod_patch_row_major = tensor_row_major.extract_image_patches(2, 2);
VERIFY_IS_EQUAL(twod_patch_row_major.dimension(0), 3*5);
VERIFY_IS_EQUAL(twod_patch_row_major.dimension(1), 2);
VERIFY_IS_EQUAL(twod_patch_row_major.dimension(2), 2);

View File

@ -0,0 +1,35 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
#define EIGEN_TEST_FUNC cxx11_tensor_random_cuda
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#define EIGEN_USE_GPU
#include "main.h"
#include <Eigen/CXX11/Tensor>
static void test_default()
{
Tensor<std::complex<float>, 1> vec(6);
vec.setRandom();
// Fixme: we should check that the generated numbers follow a uniform
// distribution instead.
for (int i = 1; i < 6; ++i) {
VERIFY_IS_NOT_EQUAL(vec(i), vec(i-1));
}
}
void test_cxx11_tensor_random_cuda()
{
CALL_SUBTEST(test_default());
}