mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-03-31 19:00:35 +08:00
port the qr module to ei_solve_xxx.
This commit is contained in:
parent
68210b03c1
commit
ba7bfe110c
@ -198,8 +198,6 @@ PartialPivLU<MatrixType>::PartialPivLU(const MatrixType& matrix)
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/** This is the blocked version of ei_fullpivlu_unblocked() */
|
||||
template<typename Scalar, int StorageOrder>
|
||||
struct ei_partial_lu_impl
|
||||
|
@ -42,17 +42,17 @@
|
||||
*
|
||||
* \sa MatrixBase::colPivHouseholderQr()
|
||||
*/
|
||||
template<typename MatrixType> class ColPivHouseholderQR
|
||||
template<typename _MatrixType> class ColPivHouseholderQR
|
||||
{
|
||||
public:
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
Options = MatrixType::Options,
|
||||
DiagSizeAtCompileTime = EIGEN_ENUM_MIN(ColsAtCompileTime,RowsAtCompileTime)
|
||||
};
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixQType;
|
||||
@ -83,22 +83,27 @@ template<typename MatrixType> class ColPivHouseholderQR
|
||||
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
|
||||
* *this is the QR decomposition, if any exists.
|
||||
*
|
||||
* \returns \c true if a solution exists, \c false if no solution exists.
|
||||
*
|
||||
* \param b the right-hand-side of the equation to solve.
|
||||
*
|
||||
* \param result a pointer to the vector/matrix in which to store the solution, if any exists.
|
||||
* Resized if necessary, so that result->rows()==A.cols() and result->cols()==b.cols().
|
||||
* If no solution exists, *result is left with undefined coefficients.
|
||||
* \returns a solution.
|
||||
*
|
||||
* \note The case where b is a matrix is not yet implemented. Also, this
|
||||
* code is space inefficient.
|
||||
*
|
||||
* \note_about_checking_solutions
|
||||
*
|
||||
* \note_about_arbitrary_choice_of_solution
|
||||
*
|
||||
* Example: \include ColPivHouseholderQR_solve.cpp
|
||||
* Output: \verbinclude ColPivHouseholderQR_solve.out
|
||||
*/
|
||||
template<typename OtherDerived, typename ResultType>
|
||||
bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
|
||||
template<typename Rhs>
|
||||
inline const ei_solve_return_value<ColPivHouseholderQR, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
|
||||
return ei_solve_return_value<ColPivHouseholderQR, Rhs>(*this, b.derived());
|
||||
}
|
||||
|
||||
HouseholderSequenceType matrixQ(void) const;
|
||||
|
||||
@ -204,36 +209,24 @@ template<typename MatrixType> class ColPivHouseholderQR
|
||||
return isInjective() && isSurjective();
|
||||
}
|
||||
|
||||
/** Computes the inverse of the matrix of which *this is the QR decomposition.
|
||||
*
|
||||
* \param result a pointer to the matrix into which to store the inverse. Resized if needed.
|
||||
*
|
||||
* \note If this matrix is not invertible, *result is left with undefined coefficients.
|
||||
* Use isInvertible() to first determine whether this matrix is invertible.
|
||||
*
|
||||
* \sa inverse()
|
||||
*/
|
||||
inline void computeInverse(MatrixType *result) const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
|
||||
ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the inverse of a non-square matrix!");
|
||||
solve(MatrixType::Identity(m_qr.rows(), m_qr.cols()), result);
|
||||
}
|
||||
|
||||
/** \returns the inverse of the matrix of which *this is the QR decomposition.
|
||||
*
|
||||
* \note If this matrix is not invertible, the returned matrix has undefined coefficients.
|
||||
* Use isInvertible() to first determine whether this matrix is invertible.
|
||||
*
|
||||
* \sa computeInverse()
|
||||
*/
|
||||
inline MatrixType inverse() const
|
||||
inline const
|
||||
ei_solve_return_value<ColPivHouseholderQR, NestByValue<typename MatrixType::IdentityReturnType> >
|
||||
inverse() const
|
||||
{
|
||||
MatrixType result;
|
||||
computeInverse(&result);
|
||||
return result;
|
||||
ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
|
||||
return ei_solve_return_value<ColPivHouseholderQR,NestByValue<typename MatrixType::IdentityReturnType> >
|
||||
(*this, MatrixType::Identity(m_qr.rows(), m_qr.cols()).nestByValue());
|
||||
}
|
||||
|
||||
inline int rows() const { return m_qr.rows(); }
|
||||
inline int cols() const { return m_qr.cols(); }
|
||||
const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
|
||||
|
||||
protected:
|
||||
MatrixType m_qr;
|
||||
HCoeffsType m_hCoeffs;
|
||||
@ -331,50 +324,56 @@ ColPivHouseholderQR<MatrixType>& ColPivHouseholderQR<MatrixType>::compute(const
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
template<typename OtherDerived, typename ResultType>
|
||||
bool ColPivHouseholderQR<MatrixType>::solve(
|
||||
const MatrixBase<OtherDerived>& b,
|
||||
ResultType *result
|
||||
) const
|
||||
template<typename MatrixType, typename Rhs, typename Dest>
|
||||
struct ei_solve_impl<ColPivHouseholderQR<MatrixType>, Rhs, Dest>
|
||||
: ei_solve_return_value<ColPivHouseholderQR<MatrixType>, Rhs>
|
||||
{
|
||||
ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
|
||||
result->resize(m_qr.cols(), b.cols());
|
||||
if(m_rank==0)
|
||||
void evalTo(Dest& dst) const
|
||||
{
|
||||
if(b.squaredNorm() == RealScalar(0))
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
const ColPivHouseholderQR<MatrixType>& dec = this->m_dec;
|
||||
const Rhs& rhs = this->m_rhs;
|
||||
const int rows = dec.rows(), cols = dec.cols();
|
||||
dst.resize(cols, rhs.cols());
|
||||
ei_assert(rhs.rows() == rows);
|
||||
|
||||
// FIXME introduce nonzeroPivots() and use it here. and more generally,
|
||||
// make the same improvements in this dec as in FullPivLU.
|
||||
if(dec.rank()==0)
|
||||
{
|
||||
result->setZero();
|
||||
return true;
|
||||
dst.setZero();
|
||||
return;
|
||||
}
|
||||
else return false;
|
||||
|
||||
typename Rhs::PlainMatrixType c(rhs);
|
||||
|
||||
// Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
|
||||
c.applyOnTheLeft(makeHouseholderSequence(
|
||||
dec.matrixQR().corner(TopLeft,rows,dec.rank()),
|
||||
dec.hCoeffs().start(dec.rank())).transpose()
|
||||
);
|
||||
|
||||
if(!dec.isSurjective())
|
||||
{
|
||||
// is c is in the image of R ?
|
||||
RealScalar biggest_in_upper_part_of_c = c.corner(TopLeft, dec.rank(), c.cols()).cwise().abs().maxCoeff();
|
||||
RealScalar biggest_in_lower_part_of_c = c.corner(BottomLeft, rows-dec.rank(), c.cols()).cwise().abs().maxCoeff();
|
||||
// FIXME brain dead
|
||||
const RealScalar m_precision = epsilon<Scalar>() * std::min(rows,cols);
|
||||
if(!ei_isMuchSmallerThan(biggest_in_lower_part_of_c, biggest_in_upper_part_of_c, m_precision*4))
|
||||
return;
|
||||
}
|
||||
|
||||
dec.matrixQR()
|
||||
.corner(TopLeft, dec.rank(), dec.rank())
|
||||
.template triangularView<UpperTriangular>()
|
||||
.solveInPlace(c.corner(TopLeft, dec.rank(), c.cols()));
|
||||
|
||||
for(int i = 0; i < dec.rank(); ++i) dst.row(dec.colsPermutation().coeff(i)) = c.row(i);
|
||||
for(int i = dec.rank(); i < cols; ++i) dst.row(dec.colsPermutation().coeff(i)).setZero();
|
||||
}
|
||||
|
||||
const int rows = m_qr.rows();
|
||||
ei_assert(b.rows() == rows);
|
||||
|
||||
typename OtherDerived::PlainMatrixType c(b);
|
||||
|
||||
// Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
|
||||
c.applyOnTheLeft(makeHouseholderSequence(m_qr.corner(TopLeft,rows,m_rank), m_hCoeffs.start(m_rank)).transpose());
|
||||
|
||||
if(!isSurjective())
|
||||
{
|
||||
// is c is in the image of R ?
|
||||
RealScalar biggest_in_upper_part_of_c = c.corner(TopLeft, m_rank, c.cols()).cwise().abs().maxCoeff();
|
||||
RealScalar biggest_in_lower_part_of_c = c.corner(BottomLeft, rows-m_rank, c.cols()).cwise().abs().maxCoeff();
|
||||
if(!ei_isMuchSmallerThan(biggest_in_lower_part_of_c, biggest_in_upper_part_of_c, m_precision*4))
|
||||
return false;
|
||||
}
|
||||
|
||||
m_qr.corner(TopLeft, m_rank, m_rank)
|
||||
.template triangularView<UpperTriangular>()
|
||||
.solveInPlace(c.corner(TopLeft, m_rank, c.cols()));
|
||||
|
||||
for(int i = 0; i < m_rank; ++i) result->row(m_cols_permutation.coeff(i)) = c.row(i);
|
||||
for(int i = m_rank; i < m_qr.cols(); ++i) result->row(m_cols_permutation.coeff(i)).setZero();
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
/** \returns the matrix Q as a sequence of householder transformations */
|
||||
template<typename MatrixType>
|
||||
|
@ -42,17 +42,17 @@
|
||||
*
|
||||
* \sa MatrixBase::fullPivHouseholderQr()
|
||||
*/
|
||||
template<typename MatrixType> class FullPivHouseholderQR
|
||||
template<typename _MatrixType> class FullPivHouseholderQR
|
||||
{
|
||||
public:
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
Options = MatrixType::Options,
|
||||
DiagSizeAtCompileTime = EIGEN_ENUM_MIN(ColsAtCompileTime,RowsAtCompileTime)
|
||||
};
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixQType;
|
||||
@ -78,22 +78,27 @@ template<typename MatrixType> class FullPivHouseholderQR
|
||||
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
|
||||
* *this is the QR decomposition, if any exists.
|
||||
*
|
||||
* \returns \c true if a solution exists, \c false if no solution exists.
|
||||
*
|
||||
* \param b the right-hand-side of the equation to solve.
|
||||
*
|
||||
* \param result a pointer to the vector/matrix in which to store the solution, if any exists.
|
||||
* Resized if necessary, so that result->rows()==A.cols() and result->cols()==b.cols().
|
||||
* If no solution exists, *result is left with undefined coefficients.
|
||||
* \returns a solution.
|
||||
*
|
||||
* \note The case where b is a matrix is not yet implemented. Also, this
|
||||
* code is space inefficient.
|
||||
*
|
||||
* \note_about_checking_solutions
|
||||
*
|
||||
* \note_about_arbitrary_choice_of_solution
|
||||
*
|
||||
* Example: \include FullPivHouseholderQR_solve.cpp
|
||||
* Output: \verbinclude FullPivHouseholderQR_solve.out
|
||||
*/
|
||||
template<typename OtherDerived, typename ResultType>
|
||||
bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
|
||||
template<typename Rhs>
|
||||
inline const ei_solve_return_value<FullPivHouseholderQR, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
{
|
||||
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
||||
return ei_solve_return_value<FullPivHouseholderQR, Rhs>(*this, b.derived());
|
||||
}
|
||||
|
||||
MatrixQType matrixQ(void) const;
|
||||
|
||||
@ -205,36 +210,23 @@ template<typename MatrixType> class FullPivHouseholderQR
|
||||
return isInjective() && isSurjective();
|
||||
}
|
||||
|
||||
/** Computes the inverse of the matrix of which *this is the QR decomposition.
|
||||
*
|
||||
* \param result a pointer to the matrix into which to store the inverse. Resized if needed.
|
||||
*
|
||||
* \note If this matrix is not invertible, *result is left with undefined coefficients.
|
||||
* Use isInvertible() to first determine whether this matrix is invertible.
|
||||
*
|
||||
* \sa inverse()
|
||||
*/
|
||||
inline void computeInverse(MatrixType *result) const
|
||||
{
|
||||
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
||||
ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the inverse of a non-square matrix!");
|
||||
solve(MatrixType::Identity(m_qr.rows(), m_qr.cols()), result);
|
||||
}
|
||||
|
||||
/** \returns the inverse of the matrix of which *this is the QR decomposition.
|
||||
*
|
||||
* \note If this matrix is not invertible, the returned matrix has undefined coefficients.
|
||||
* Use isInvertible() to first determine whether this matrix is invertible.
|
||||
*
|
||||
* \sa computeInverse()
|
||||
*/
|
||||
inline MatrixType inverse() const
|
||||
*/ inline const
|
||||
ei_solve_return_value<FullPivHouseholderQR, NestByValue<typename MatrixType::IdentityReturnType> >
|
||||
inverse() const
|
||||
{
|
||||
MatrixType result;
|
||||
computeInverse(&result);
|
||||
return result;
|
||||
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
||||
return ei_solve_return_value<FullPivHouseholderQR,NestByValue<typename MatrixType::IdentityReturnType> >
|
||||
(*this, MatrixType::Identity(m_qr.rows(), m_qr.cols()).nestByValue());
|
||||
}
|
||||
|
||||
inline int rows() const { return m_qr.rows(); }
|
||||
inline int cols() const { return m_qr.cols(); }
|
||||
const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
|
||||
|
||||
protected:
|
||||
MatrixType m_qr;
|
||||
HCoeffsType m_hCoeffs;
|
||||
@ -340,56 +332,59 @@ FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(cons
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
template<typename OtherDerived, typename ResultType>
|
||||
bool FullPivHouseholderQR<MatrixType>::solve(
|
||||
const MatrixBase<OtherDerived>& b,
|
||||
ResultType *result
|
||||
) const
|
||||
template<typename MatrixType, typename Rhs, typename Dest>
|
||||
struct ei_solve_impl<FullPivHouseholderQR<MatrixType>, Rhs, Dest>
|
||||
: ei_solve_return_value<FullPivHouseholderQR<MatrixType>, Rhs>
|
||||
{
|
||||
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
||||
result->resize(m_qr.cols(), b.cols());
|
||||
if(m_rank==0)
|
||||
void evalTo(Dest& dst) const
|
||||
{
|
||||
if(b.squaredNorm() == RealScalar(0))
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
const FullPivHouseholderQR<MatrixType>& dec = this->m_dec;
|
||||
const Rhs& rhs = this->m_rhs;
|
||||
const int rows = dec.rows(), cols = dec.cols();
|
||||
dst.resize(cols, rhs.cols());
|
||||
ei_assert(rhs.rows() == rows);
|
||||
|
||||
// FIXME introduce nonzeroPivots() and use it here. and more generally,
|
||||
// make the same improvements in this dec as in FullPivLU.
|
||||
if(dec.rank()==0)
|
||||
{
|
||||
result->setZero();
|
||||
return true;
|
||||
dst.setZero();
|
||||
return;
|
||||
}
|
||||
else return false;
|
||||
|
||||
typename Rhs::PlainMatrixType c(rhs);
|
||||
|
||||
Matrix<Scalar,1,Rhs::ColsAtCompileTime> temp(rhs.cols());
|
||||
for (int k = 0; k < dec.rank(); ++k)
|
||||
{
|
||||
int remainingSize = rows-k;
|
||||
c.row(k).swap(c.row(dec.rowsTranspositions().coeff(k)));
|
||||
c.corner(BottomRight, remainingSize, rhs.cols())
|
||||
.applyHouseholderOnTheLeft(dec.matrixQR().col(k).end(remainingSize-1),
|
||||
dec.hCoeffs().coeff(k), &temp.coeffRef(0));
|
||||
}
|
||||
|
||||
if(!dec.isSurjective())
|
||||
{
|
||||
// is c is in the image of R ?
|
||||
RealScalar biggest_in_upper_part_of_c = c.corner(TopLeft, dec.rank(), c.cols()).cwise().abs().maxCoeff();
|
||||
RealScalar biggest_in_lower_part_of_c = c.corner(BottomLeft, rows-dec.rank(), c.cols()).cwise().abs().maxCoeff();
|
||||
// FIXME brain dead
|
||||
const RealScalar m_precision = epsilon<Scalar>() * std::min(rows,cols);
|
||||
if(!ei_isMuchSmallerThan(biggest_in_lower_part_of_c, biggest_in_upper_part_of_c, m_precision))
|
||||
return;
|
||||
}
|
||||
dec.matrixQR()
|
||||
.corner(TopLeft, dec.rank(), dec.rank())
|
||||
.template triangularView<UpperTriangular>()
|
||||
.solveInPlace(c.corner(TopLeft, dec.rank(), c.cols()));
|
||||
|
||||
for(int i = 0; i < dec.rank(); ++i) dst.row(dec.colsPermutation().coeff(i)) = c.row(i);
|
||||
for(int i = dec.rank(); i < cols; ++i) dst.row(dec.colsPermutation().coeff(i)).setZero();
|
||||
}
|
||||
|
||||
const int rows = m_qr.rows();
|
||||
const int cols = b.cols();
|
||||
ei_assert(b.rows() == rows);
|
||||
|
||||
typename OtherDerived::PlainMatrixType c(b);
|
||||
|
||||
Matrix<Scalar,1,MatrixType::ColsAtCompileTime> temp(cols);
|
||||
for (int k = 0; k < m_rank; ++k)
|
||||
{
|
||||
int remainingSize = rows-k;
|
||||
c.row(k).swap(c.row(m_rows_transpositions.coeff(k)));
|
||||
c.corner(BottomRight, remainingSize, cols)
|
||||
.applyHouseholderOnTheLeft(m_qr.col(k).end(remainingSize-1), m_hCoeffs.coeff(k), &temp.coeffRef(0));
|
||||
}
|
||||
|
||||
if(!isSurjective())
|
||||
{
|
||||
// is c is in the image of R ?
|
||||
RealScalar biggest_in_upper_part_of_c = c.corner(TopLeft, m_rank, c.cols()).cwise().abs().maxCoeff();
|
||||
RealScalar biggest_in_lower_part_of_c = c.corner(BottomLeft, rows-m_rank, c.cols()).cwise().abs().maxCoeff();
|
||||
if(!ei_isMuchSmallerThan(biggest_in_lower_part_of_c, biggest_in_upper_part_of_c, m_precision))
|
||||
return false;
|
||||
}
|
||||
m_qr.corner(TopLeft, m_rank, m_rank)
|
||||
.template triangularView<UpperTriangular>()
|
||||
.solveInPlace(c.corner(TopLeft, m_rank, c.cols()));
|
||||
|
||||
for(int i = 0; i < m_rank; ++i) result->row(m_cols_permutation.coeff(i)) = c.row(i);
|
||||
for(int i = m_rank; i < m_qr.cols(); ++i) result->row(m_cols_permutation.coeff(i)).setZero();
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
/** \returns the matrix Q */
|
||||
template<typename MatrixType>
|
||||
|
@ -46,17 +46,17 @@
|
||||
*
|
||||
* \sa MatrixBase::householderQr()
|
||||
*/
|
||||
template<typename MatrixType> class HouseholderQR
|
||||
template<typename _MatrixType> class HouseholderQR
|
||||
{
|
||||
public:
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
Options = MatrixType::Options,
|
||||
DiagSizeAtCompileTime = EIGEN_ENUM_MIN(ColsAtCompileTime,RowsAtCompileTime)
|
||||
};
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, AutoAlign | (ei_traits<MatrixType>::Flags&RowMajorBit ? RowMajor : ColMajor)> MatrixQType;
|
||||
@ -85,19 +85,26 @@ template<typename MatrixType> class HouseholderQR
|
||||
*
|
||||
* \param b the right-hand-side of the equation to solve.
|
||||
*
|
||||
* \param result a pointer to the vector/matrix in which to store the solution, if any exists.
|
||||
* Resized if necessary, so that result->rows()==A.cols() and result->cols()==b.cols().
|
||||
* If no solution exists, *result is left with undefined coefficients.
|
||||
* \returns a solution.
|
||||
*
|
||||
* \note The case where b is a matrix is not yet implemented. Also, this
|
||||
* code is space inefficient.
|
||||
*
|
||||
* \note_about_checking_solutions
|
||||
*
|
||||
* \note_about_arbitrary_choice_of_solution
|
||||
*
|
||||
* Example: \include HouseholderQR_solve.cpp
|
||||
* Output: \verbinclude HouseholderQR_solve.out
|
||||
*/
|
||||
template<typename OtherDerived, typename ResultType>
|
||||
void solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
|
||||
|
||||
template<typename Rhs>
|
||||
inline const ei_solve_return_value<HouseholderQR, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
{
|
||||
ei_assert(m_isInitialized && "HouseholderQR is not initialized.");
|
||||
return ei_solve_return_value<HouseholderQR, Rhs>(*this, b.derived());
|
||||
}
|
||||
|
||||
MatrixQType matrixQ() const;
|
||||
|
||||
HouseholderSequenceType matrixQAsHouseholderSequence() const
|
||||
@ -145,6 +152,10 @@ template<typename MatrixType> class HouseholderQR
|
||||
*/
|
||||
typename MatrixType::RealScalar logAbsDeterminant() const;
|
||||
|
||||
inline int rows() const { return m_qr.rows(); }
|
||||
inline int cols() const { return m_qr.cols(); }
|
||||
const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
|
||||
|
||||
protected:
|
||||
MatrixType m_qr;
|
||||
HCoeffsType m_hCoeffs;
|
||||
@ -198,31 +209,36 @@ HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const MatrixType&
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
template<typename OtherDerived, typename ResultType>
|
||||
void HouseholderQR<MatrixType>::solve(
|
||||
const MatrixBase<OtherDerived>& b,
|
||||
ResultType *result
|
||||
) const
|
||||
template<typename MatrixType, typename Rhs, typename Dest>
|
||||
struct ei_solve_impl<HouseholderQR<MatrixType>, Rhs, Dest>
|
||||
: ei_solve_return_value<HouseholderQR<MatrixType>, Rhs>
|
||||
{
|
||||
ei_assert(m_isInitialized && "HouseholderQR is not initialized.");
|
||||
result->derived().resize(m_qr.cols(), b.cols());
|
||||
const int rows = m_qr.rows();
|
||||
const int rank = std::min(m_qr.rows(), m_qr.cols());
|
||||
ei_assert(b.rows() == rows);
|
||||
void evalTo(Dest& dst) const
|
||||
{
|
||||
const HouseholderQR<MatrixType>& dec = this->m_dec;
|
||||
const Rhs& rhs = this->m_rhs;
|
||||
const int rows = dec.rows(), cols = dec.cols();
|
||||
dst.resize(cols, rhs.cols());
|
||||
const int rank = std::min(rows, cols);
|
||||
ei_assert(rhs.rows() == rows);
|
||||
|
||||
typename OtherDerived::PlainMatrixType c(b);
|
||||
typename Rhs::PlainMatrixType c(rhs);
|
||||
|
||||
// Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
|
||||
c.applyOnTheLeft(makeHouseholderSequence(m_qr.corner(TopLeft,rows,rank), m_hCoeffs.start(rank)).transpose());
|
||||
// Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
|
||||
c.applyOnTheLeft(makeHouseholderSequence(
|
||||
dec.matrixQR().corner(TopLeft,rows,rank),
|
||||
dec.hCoeffs().start(rank)).transpose()
|
||||
);
|
||||
|
||||
m_qr.corner(TopLeft, rank, rank)
|
||||
.template triangularView<UpperTriangular>()
|
||||
.solveInPlace(c.corner(TopLeft, rank, c.cols()));
|
||||
dec.matrixQR()
|
||||
.corner(TopLeft, rank, rank)
|
||||
.template triangularView<UpperTriangular>()
|
||||
.solveInPlace(c.corner(TopLeft, rank, c.cols()));
|
||||
|
||||
result->corner(TopLeft, rank, c.cols()) = c.corner(TopLeft,rank, c.cols());
|
||||
result->corner(BottomLeft, result->rows()-rank, c.cols()).setZero();
|
||||
}
|
||||
dst.corner(TopLeft, rank, c.cols()) = c.corner(TopLeft, rank, c.cols());
|
||||
dst.corner(BottomLeft, cols-rank, c.cols()).setZero();
|
||||
}
|
||||
};
|
||||
|
||||
/** \returns the matrix Q */
|
||||
template<typename MatrixType>
|
||||
|
@ -86,7 +86,6 @@ template<typename _MatrixType> class SVD
|
||||
* \note_about_checking_solutions
|
||||
*
|
||||
* \note_about_arbitrary_choice_of_solution
|
||||
* \note_about_using_kernel_to_study_multiple_solutions
|
||||
*
|
||||
* \sa MatrixBase::svd(),
|
||||
*/
|
||||
|
@ -63,7 +63,7 @@ template<typename MatrixType, int Cols2> void qr_fixedsize()
|
||||
Matrix<Scalar,Cols,Cols2> m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2);
|
||||
Matrix<Scalar,Rows,Cols2> m3 = m1*m2;
|
||||
m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2);
|
||||
qr.solve(m3, &m2);
|
||||
m2 = qr.solve(m3);
|
||||
VERIFY_IS_APPROX(m3, m1*m2);
|
||||
}
|
||||
|
||||
@ -86,7 +86,7 @@ template<typename MatrixType> void qr_invertible()
|
||||
|
||||
HouseholderQR<MatrixType> qr(m1);
|
||||
m3 = MatrixType::Random(size,size);
|
||||
qr.solve(m3, &m2);
|
||||
m2 = qr.solve(m3);
|
||||
VERIFY_IS_APPROX(m3, m1*m2);
|
||||
|
||||
// now construct a matrix with prescribed determinant
|
||||
@ -106,7 +106,7 @@ template<typename MatrixType> void qr_verify_assert()
|
||||
|
||||
HouseholderQR<MatrixType> qr;
|
||||
VERIFY_RAISES_ASSERT(qr.matrixQR())
|
||||
VERIFY_RAISES_ASSERT(qr.solve(tmp,&tmp))
|
||||
VERIFY_RAISES_ASSERT(qr.solve(tmp))
|
||||
VERIFY_RAISES_ASSERT(qr.matrixQ())
|
||||
VERIFY_RAISES_ASSERT(qr.absDeterminant())
|
||||
VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
|
||||
|
@ -61,10 +61,8 @@ template<typename MatrixType> void qr()
|
||||
MatrixType m2 = MatrixType::Random(cols,cols2);
|
||||
MatrixType m3 = m1*m2;
|
||||
m2 = MatrixType::Random(cols,cols2);
|
||||
VERIFY(qr.solve(m3, &m2));
|
||||
m2 = qr.solve(m3);
|
||||
VERIFY_IS_APPROX(m3, m1*m2);
|
||||
m3 = MatrixType::Random(rows,cols2);
|
||||
VERIFY(!qr.solve(m3, &m2));
|
||||
}
|
||||
|
||||
template<typename MatrixType, int Cols2> void qr_fixedsize()
|
||||
@ -95,10 +93,8 @@ template<typename MatrixType, int Cols2> void qr_fixedsize()
|
||||
Matrix<Scalar,Cols,Cols2> m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2);
|
||||
Matrix<Scalar,Rows,Cols2> m3 = m1*m2;
|
||||
m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2);
|
||||
VERIFY(qr.solve(m3, &m2));
|
||||
m2 = qr.solve(m3);
|
||||
VERIFY_IS_APPROX(m3, m1*m2);
|
||||
m3 = Matrix<Scalar,Rows,Cols2>::Random(Rows,Cols2);
|
||||
VERIFY(!qr.solve(m3, &m2));
|
||||
}
|
||||
|
||||
template<typename MatrixType> void qr_invertible()
|
||||
@ -120,7 +116,7 @@ template<typename MatrixType> void qr_invertible()
|
||||
|
||||
ColPivHouseholderQR<MatrixType> qr(m1);
|
||||
m3 = MatrixType::Random(size,size);
|
||||
qr.solve(m3, &m2);
|
||||
m2 = qr.solve(m3);
|
||||
VERIFY_IS_APPROX(m3, m1*m2);
|
||||
|
||||
// now construct a matrix with prescribed determinant
|
||||
@ -140,13 +136,12 @@ template<typename MatrixType> void qr_verify_assert()
|
||||
|
||||
ColPivHouseholderQR<MatrixType> qr;
|
||||
VERIFY_RAISES_ASSERT(qr.matrixQR())
|
||||
VERIFY_RAISES_ASSERT(qr.solve(tmp,&tmp))
|
||||
VERIFY_RAISES_ASSERT(qr.solve(tmp))
|
||||
VERIFY_RAISES_ASSERT(qr.matrixQ())
|
||||
VERIFY_RAISES_ASSERT(qr.dimensionOfKernel())
|
||||
VERIFY_RAISES_ASSERT(qr.isInjective())
|
||||
VERIFY_RAISES_ASSERT(qr.isSurjective())
|
||||
VERIFY_RAISES_ASSERT(qr.isInvertible())
|
||||
VERIFY_RAISES_ASSERT(qr.computeInverse(&tmp))
|
||||
VERIFY_RAISES_ASSERT(qr.inverse())
|
||||
VERIFY_RAISES_ASSERT(qr.absDeterminant())
|
||||
VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
|
||||
|
@ -61,10 +61,8 @@ template<typename MatrixType> void qr()
|
||||
MatrixType m2 = MatrixType::Random(cols,cols2);
|
||||
MatrixType m3 = m1*m2;
|
||||
m2 = MatrixType::Random(cols,cols2);
|
||||
VERIFY(qr.solve(m3, &m2));
|
||||
m2 = qr.solve(m3);
|
||||
VERIFY_IS_APPROX(m3, m1*m2);
|
||||
m3 = MatrixType::Random(rows,cols2);
|
||||
VERIFY(!qr.solve(m3, &m2));
|
||||
}
|
||||
|
||||
template<typename MatrixType> void qr_invertible()
|
||||
@ -90,7 +88,7 @@ template<typename MatrixType> void qr_invertible()
|
||||
VERIFY(qr.isSurjective());
|
||||
|
||||
m3 = MatrixType::Random(size,size);
|
||||
VERIFY(qr.solve(m3, &m2));
|
||||
m2 = qr.solve(m3);
|
||||
VERIFY_IS_APPROX(m3, m1*m2);
|
||||
|
||||
// now construct a matrix with prescribed determinant
|
||||
@ -110,13 +108,12 @@ template<typename MatrixType> void qr_verify_assert()
|
||||
|
||||
FullPivHouseholderQR<MatrixType> qr;
|
||||
VERIFY_RAISES_ASSERT(qr.matrixQR())
|
||||
VERIFY_RAISES_ASSERT(qr.solve(tmp,&tmp))
|
||||
VERIFY_RAISES_ASSERT(qr.solve(tmp))
|
||||
VERIFY_RAISES_ASSERT(qr.matrixQ())
|
||||
VERIFY_RAISES_ASSERT(qr.dimensionOfKernel())
|
||||
VERIFY_RAISES_ASSERT(qr.isInjective())
|
||||
VERIFY_RAISES_ASSERT(qr.isSurjective())
|
||||
VERIFY_RAISES_ASSERT(qr.isInvertible())
|
||||
VERIFY_RAISES_ASSERT(qr.computeInverse(&tmp))
|
||||
VERIFY_RAISES_ASSERT(qr.inverse())
|
||||
VERIFY_RAISES_ASSERT(qr.absDeterminant())
|
||||
VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
|
||||
|
Loading…
x
Reference in New Issue
Block a user