mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-03-07 18:27:40 +08:00
Pulled latest updates from trunk.
This commit is contained in:
commit
b9db19aec4
@ -71,7 +71,7 @@ Index SparseLUImpl<Scalar,StorageIndex>::pivotL(const Index jcol, const RealScal
|
||||
|
||||
// Determine the largest abs numerical value for partial pivoting
|
||||
Index diagind = iperm_c(jcol); // diagonal index
|
||||
RealScalar pivmax = 0.0;
|
||||
RealScalar pivmax(-1.0);
|
||||
Index pivptr = nsupc;
|
||||
Index diag = emptyIdxLU;
|
||||
RealScalar rtemp;
|
||||
@ -87,8 +87,9 @@ Index SparseLUImpl<Scalar,StorageIndex>::pivotL(const Index jcol, const RealScal
|
||||
}
|
||||
|
||||
// Test for singularity
|
||||
if ( pivmax == 0.0 ) {
|
||||
pivrow = lsub_ptr[pivptr];
|
||||
if ( pivmax <= RealScalar(0.0) ) {
|
||||
// if pivmax == -1, the column is structurally empty, otherwise it is only numerically zero
|
||||
pivrow = pivmax < RealScalar(0.0) ? diagind : lsub_ptr[pivptr];
|
||||
perm_r(pivrow) = StorageIndex(jcol);
|
||||
return (jcol+1);
|
||||
}
|
||||
@ -104,13 +105,13 @@ Index SparseLUImpl<Scalar,StorageIndex>::pivotL(const Index jcol, const RealScal
|
||||
// Diagonal element exists
|
||||
using std::abs;
|
||||
rtemp = abs(lu_col_ptr[diag]);
|
||||
if (rtemp != 0.0 && rtemp >= thresh) pivptr = diag;
|
||||
if (rtemp != RealScalar(0.0) && rtemp >= thresh) pivptr = diag;
|
||||
}
|
||||
pivrow = lsub_ptr[pivptr];
|
||||
}
|
||||
|
||||
// Record pivot row
|
||||
perm_r(pivrow) = StorageIndex(jcol);
|
||||
perm_r(pivrow) = StorageIndex(jcol);
|
||||
// Interchange row subscripts
|
||||
if (pivptr != nsupc )
|
||||
{
|
||||
|
@ -332,7 +332,18 @@ Index generate_sparse_square_problem(Solver&, typename Solver::MatrixType& A, De
|
||||
return size;
|
||||
}
|
||||
|
||||
template<typename Solver> void check_sparse_square_solving(Solver& solver, int maxSize = 300, int maxRealWorldSize = 100000)
|
||||
|
||||
struct prune_column {
|
||||
Index m_col;
|
||||
prune_column(Index col) : m_col(col) {}
|
||||
template<class Scalar>
|
||||
bool operator()(Index, Index col, const Scalar&) const {
|
||||
return col != m_col;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template<typename Solver> void check_sparse_square_solving(Solver& solver, int maxSize = 300, int maxRealWorldSize = 100000, bool checkDeficient = false)
|
||||
{
|
||||
typedef typename Solver::MatrixType Mat;
|
||||
typedef typename Mat::Scalar Scalar;
|
||||
@ -364,6 +375,13 @@ template<typename Solver> void check_sparse_square_solving(Solver& solver, int m
|
||||
b = DenseVector::Zero(size);
|
||||
check_sparse_solving(solver, A, b, dA, b);
|
||||
}
|
||||
// regression test for Bug 792 (structurally rank deficient matrices):
|
||||
if(checkDeficient && size>1) {
|
||||
Index col = internal::random<int>(0,size-1);
|
||||
A.prune(prune_column(col));
|
||||
solver.compute(A);
|
||||
VERIFY_IS_EQUAL(solver.info(), NumericalIssue);
|
||||
}
|
||||
}
|
||||
|
||||
// First, get the folder
|
||||
|
@ -42,8 +42,8 @@ template<typename T> void test_sparselu_T()
|
||||
SparseLU<SparseMatrix<T, ColMajor, long int>, NaturalOrdering<long int> > sparselu_natural;
|
||||
|
||||
check_sparse_square_solving(sparselu_colamd);
|
||||
check_sparse_square_solving(sparselu_amd, 300, 2000);
|
||||
check_sparse_square_solving(sparselu_natural, 300, 2000);
|
||||
check_sparse_square_solving(sparselu_amd, 300, 2000, !true); // FIXME AMD ordering fails for structurally deficient matrices!
|
||||
check_sparse_square_solving(sparselu_natural, 300, 2000, true);
|
||||
|
||||
check_sparse_square_abs_determinant(sparselu_colamd);
|
||||
check_sparse_square_abs_determinant(sparselu_amd);
|
||||
|
@ -66,7 +66,7 @@ class BaseTensorContractionMapper {
|
||||
const bool left = (side == Lhs);
|
||||
Index nocontract_val = left ? row : col;
|
||||
Index linidx = 0;
|
||||
for (int i = array_size<nocontract_t>::value - 1; i > 0; i--) {
|
||||
for (int i = static_cast<int>(array_size<nocontract_t>::value) - 1; i > 0; i--) {
|
||||
const Index idx = nocontract_val / m_ij_strides[i];
|
||||
linidx += idx * m_nocontract_strides[i];
|
||||
nocontract_val -= idx * m_ij_strides[i];
|
||||
@ -81,17 +81,19 @@ class BaseTensorContractionMapper {
|
||||
}
|
||||
|
||||
Index contract_val = left ? col : row;
|
||||
for (int i = array_size<contract_t>::value - 1; i > 0; i--) {
|
||||
for (int i = static_cast<int>(array_size<contract_t>::value) - 1; i > 0; i--) {
|
||||
const Index idx = contract_val / m_k_strides[i];
|
||||
linidx += idx * m_contract_strides[i];
|
||||
contract_val -= idx * m_k_strides[i];
|
||||
}
|
||||
EIGEN_STATIC_ASSERT(array_size<contract_t>::value > 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
if (side == Rhs && inner_dim_contiguous) {
|
||||
eigen_assert(m_contract_strides[0] == 1);
|
||||
linidx += contract_val;
|
||||
} else {
|
||||
linidx += contract_val * m_contract_strides[0];
|
||||
|
||||
if(array_size<contract_t>::value > 0) {
|
||||
if (side == Rhs && inner_dim_contiguous) {
|
||||
eigen_assert(m_contract_strides[0] == 1);
|
||||
linidx += contract_val;
|
||||
} else {
|
||||
linidx += contract_val * m_contract_strides[0];
|
||||
}
|
||||
}
|
||||
|
||||
return linidx;
|
||||
@ -102,7 +104,7 @@ class BaseTensorContractionMapper {
|
||||
const bool left = (side == Lhs);
|
||||
Index nocontract_val[2] = {left ? row : col, left ? row + distance : col};
|
||||
Index linidx[2] = {0, 0};
|
||||
for (int i = array_size<nocontract_t>::value - 1; i > 0; i--) {
|
||||
for (int i = static_cast<int>(array_size<nocontract_t>::value) - 1; i > 0; i--) {
|
||||
const Index idx0 = nocontract_val[0] / m_ij_strides[i];
|
||||
const Index idx1 = nocontract_val[1] / m_ij_strides[i];
|
||||
linidx[0] += idx0 * m_nocontract_strides[i];
|
||||
@ -122,7 +124,7 @@ class BaseTensorContractionMapper {
|
||||
}
|
||||
|
||||
Index contract_val[2] = {left ? col : row, left ? col : row + distance};
|
||||
for (int i = array_size<contract_t>::value - 1; i > 0; i--) {
|
||||
for (int i = static_cast<int>(array_size<contract_t>::value) - 1; i > 0; i--) {
|
||||
const Index idx0 = contract_val[0] / m_k_strides[i];
|
||||
const Index idx1 = contract_val[1] / m_k_strides[i];
|
||||
linidx[0] += idx0 * m_contract_strides[i];
|
||||
@ -130,7 +132,7 @@ class BaseTensorContractionMapper {
|
||||
contract_val[0] -= idx0 * m_k_strides[i];
|
||||
contract_val[1] -= idx1 * m_k_strides[i];
|
||||
}
|
||||
EIGEN_STATIC_ASSERT(array_size<contract_t>::value > 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
|
||||
if (side == Rhs && inner_dim_contiguous) {
|
||||
eigen_assert(m_contract_strides[0] == 1);
|
||||
linidx[0] += contract_val[0];
|
||||
@ -509,8 +511,6 @@ struct TensorContractionEvaluatorBase
|
||||
static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout)),
|
||||
YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
|
||||
eigen_assert((internal::array_size<contract_t>::value > 0) && "Must contract on some indices");
|
||||
|
||||
|
||||
DSizes<Index, LDims> eval_left_dims;
|
||||
DSizes<Index, RDims> eval_right_dims;
|
||||
@ -558,7 +558,9 @@ struct TensorContractionEvaluatorBase
|
||||
|
||||
m_i_strides[0] = 1;
|
||||
m_j_strides[0] = 1;
|
||||
m_k_strides[0] = 1;
|
||||
if(ContractDims) {
|
||||
m_k_strides[0] = 1;
|
||||
}
|
||||
|
||||
m_i_size = 1;
|
||||
m_j_size = 1;
|
||||
|
@ -448,6 +448,31 @@ static void test_small_blocking_factors()
|
||||
}
|
||||
}
|
||||
|
||||
template<int DataLayout>
|
||||
static void test_tensor_product()
|
||||
{
|
||||
Tensor<float, 2, DataLayout> mat1(2, 3);
|
||||
Tensor<float, 2, DataLayout> mat2(4, 1);
|
||||
mat1.setRandom();
|
||||
mat2.setRandom();
|
||||
|
||||
Tensor<float, 4, DataLayout> result = mat1.contract(mat2, Eigen::array<DimPair, 0>{{}});
|
||||
|
||||
VERIFY_IS_EQUAL(result.dimension(0), 2);
|
||||
VERIFY_IS_EQUAL(result.dimension(1), 3);
|
||||
VERIFY_IS_EQUAL(result.dimension(2), 4);
|
||||
VERIFY_IS_EQUAL(result.dimension(3), 1);
|
||||
for (int i = 0; i < result.dimension(0); ++i) {
|
||||
for (int j = 0; j < result.dimension(1); ++j) {
|
||||
for (int k = 0; k < result.dimension(2); ++k) {
|
||||
for (int l = 0; l < result.dimension(3); ++l) {
|
||||
VERIFY_IS_APPROX(result(i, j, k, l), mat1(i, j) * mat2(k, l) );
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void test_cxx11_tensor_contraction()
|
||||
{
|
||||
@ -477,4 +502,6 @@ void test_cxx11_tensor_contraction()
|
||||
CALL_SUBTEST(test_tensor_vector<RowMajor>());
|
||||
CALL_SUBTEST(test_small_blocking_factors<ColMajor>());
|
||||
CALL_SUBTEST(test_small_blocking_factors<RowMajor>());
|
||||
CALL_SUBTEST(test_tensor_product<ColMajor>());
|
||||
CALL_SUBTEST(test_tensor_product<RowMajor>());
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user