Merged in rmlarsen/eigen (pull request PR-161)

Change Eigen's ColPivHouseholderQR to use  numerically stable norm downdate formula
This commit is contained in:
Gael Guennebaud 2016-02-03 21:37:06 +01:00
commit b70db60e4d
2 changed files with 159 additions and 52 deletions

View File

@ -11,7 +11,7 @@
#ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
#define EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
namespace Eigen {
namespace Eigen {
namespace internal {
template<typename _MatrixType> struct traits<ColPivHouseholderQR<_MatrixType> >
@ -31,11 +31,11 @@ template<typename _MatrixType> struct traits<ColPivHouseholderQR<_MatrixType> >
* \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition
*
* This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R
* such that
* such that
* \f[
* \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R}
* \f]
* by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an
* by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an
* upper triangular matrix.
*
* This decomposition performs column pivoting in order to be rank-revealing and improve
@ -67,11 +67,11 @@ template<typename _MatrixType> class ColPivHouseholderQR
typedef typename internal::plain_row_type<MatrixType, RealScalar>::type RealRowVectorType;
typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;
typedef typename MatrixType::PlainObject PlainObject;
private:
typedef typename PermutationType::StorageIndex PermIndexType;
public:
/**
@ -86,7 +86,8 @@ template<typename _MatrixType> class ColPivHouseholderQR
m_colsPermutation(),
m_colsTranspositions(),
m_temp(),
m_colSqNorms(),
m_colNormsUpdated(),
m_colNormsDirect(),
m_isInitialized(false),
m_usePrescribedThreshold(false) {}
@ -102,7 +103,8 @@ template<typename _MatrixType> class ColPivHouseholderQR
m_colsPermutation(PermIndexType(cols)),
m_colsTranspositions(cols),
m_temp(cols),
m_colSqNorms(cols),
m_colNormsUpdated(cols),
m_colNormsDirect(cols),
m_isInitialized(false),
m_usePrescribedThreshold(false) {}
@ -110,12 +112,12 @@ template<typename _MatrixType> class ColPivHouseholderQR
*
* This constructor computes the QR factorization of the matrix \a matrix by calling
* the method compute(). It is a short cut for:
*
*
* \code
* ColPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
* qr.compute(matrix);
* \endcode
*
*
* \sa compute()
*/
template<typename InputType>
@ -125,7 +127,8 @@ template<typename _MatrixType> class ColPivHouseholderQR
m_colsPermutation(PermIndexType(matrix.cols())),
m_colsTranspositions(matrix.cols()),
m_temp(matrix.cols()),
m_colSqNorms(matrix.cols()),
m_colNormsUpdated(matrix.cols()),
m_colNormsDirect(matrix.cols()),
m_isInitialized(false),
m_usePrescribedThreshold(false)
{
@ -160,7 +163,7 @@ template<typename _MatrixType> class ColPivHouseholderQR
HouseholderSequenceType householderQ() const;
HouseholderSequenceType matrixQ() const
{
return householderQ();
return householderQ();
}
/** \returns a reference to the matrix where the Householder QR decomposition is stored
@ -170,14 +173,14 @@ template<typename _MatrixType> class ColPivHouseholderQR
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
return m_qr;
}
/** \returns a reference to the matrix where the result Householder QR is stored
* \warning The strict lower part of this matrix contains internal values.
/** \returns a reference to the matrix where the result Householder QR is stored
* \warning The strict lower part of this matrix contains internal values.
* Only the upper triangular part should be referenced. To get it, use
* \code matrixR().template triangularView<Upper>() \endcode
* For rank-deficient matrices, use
* \code
* matrixR().topLeftCorner(rank(), rank()).template triangularView<Upper>()
* For rank-deficient matrices, use
* \code
* matrixR().topLeftCorner(rank(), rank()).template triangularView<Upper>()
* \endcode
*/
const MatrixType& matrixR() const
@ -185,7 +188,7 @@ template<typename _MatrixType> class ColPivHouseholderQR
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
return m_qr;
}
template<typename InputType>
ColPivHouseholderQR& compute(const EigenBase<InputType>& matrix);
@ -305,9 +308,9 @@ template<typename _MatrixType> class ColPivHouseholderQR
inline Index rows() const { return m_qr.rows(); }
inline Index cols() const { return m_qr.cols(); }
/** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
*
*
* For advanced uses only.
*/
const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
@ -380,19 +383,19 @@ template<typename _MatrixType> class ColPivHouseholderQR
* diagonal coefficient of R.
*/
RealScalar maxPivot() const { return m_maxpivot; }
/** \brief Reports whether the QR factorization was succesful.
*
* \note This function always returns \c Success. It is provided for compatibility
* \note This function always returns \c Success. It is provided for compatibility
* with other factorization routines.
* \returns \c Success
* \returns \c Success
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return Success;
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename RhsType, typename DstType>
EIGEN_DEVICE_FUNC
@ -400,20 +403,21 @@ template<typename _MatrixType> class ColPivHouseholderQR
#endif
protected:
static void check_template_parameters()
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
}
void computeInPlace();
MatrixType m_qr;
HCoeffsType m_hCoeffs;
PermutationType m_colsPermutation;
IntRowVectorType m_colsTranspositions;
RowVectorType m_temp;
RealRowVectorType m_colSqNorms;
RealRowVectorType m_colNormsUpdated;
RealRowVectorType m_colNormsDirect;
bool m_isInitialized, m_usePrescribedThreshold;
RealScalar m_prescribedThreshold, m_maxpivot;
Index m_nonzero_pivots;
@ -448,14 +452,14 @@ template<typename InputType>
ColPivHouseholderQR<MatrixType>& ColPivHouseholderQR<MatrixType>::compute(const EigenBase<InputType>& matrix)
{
check_template_parameters();
// the column permutation is stored as int indices, so just to be sure:
eigen_assert(matrix.cols()<=NumTraits<int>::highest());
m_qr = matrix;
computeInPlace();
return *this;
}
@ -463,10 +467,11 @@ template<typename MatrixType>
void ColPivHouseholderQR<MatrixType>::computeInPlace()
{
using std::abs;
Index rows = m_qr.rows();
Index cols = m_qr.cols();
Index size = m_qr.diagonalSize();
m_hCoeffs.resize(size);
m_temp.resize(cols);
@ -474,31 +479,28 @@ void ColPivHouseholderQR<MatrixType>::computeInPlace()
m_colsTranspositions.resize(m_qr.cols());
Index number_of_transpositions = 0;
m_colSqNorms.resize(cols);
for(Index k = 0; k < cols; ++k)
m_colSqNorms.coeffRef(k) = m_qr.col(k).squaredNorm();
m_colNormsUpdated.resize(cols);
m_colNormsDirect.resize(cols);
for (Index k = 0; k < cols; ++k) {
// colNormsDirect(k) caches the most recent directly computed norm of
// column k.
m_colNormsDirect.coeffRef(k) = m_qr.col(k).norm();
m_colNormsUpdated.coeffRef(k) = m_colNormsDirect.coeffRef(k);
}
RealScalar threshold_helper = m_colSqNorms.maxCoeff() * numext::abs2(NumTraits<Scalar>::epsilon()) / RealScalar(rows);
RealScalar threshold_helper = numext::abs2(m_colNormsUpdated.maxCoeff() * NumTraits<Scalar>::epsilon()) / RealScalar(rows);
RealScalar norm_downdate_threshold = numext::sqrt(NumTraits<Scalar>::epsilon());
m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
m_maxpivot = RealScalar(0);
for(Index k = 0; k < size; ++k)
{
// first, we look up in our table m_colSqNorms which column has the biggest squared norm
// first, we look up in our table m_colNormsUpdated which column has the biggest norm
Index biggest_col_index;
RealScalar biggest_col_sq_norm = m_colSqNorms.tail(cols-k).maxCoeff(&biggest_col_index);
RealScalar biggest_col_sq_norm = numext::abs2(m_colNormsUpdated.tail(cols-k).maxCoeff(&biggest_col_index));
biggest_col_index += k;
// since our table m_colSqNorms accumulates imprecision at every step, we must now recompute
// the actual squared norm of the selected column.
// Note that not doing so does result in solve() sometimes returning inf/nan values
// when running the unit test with 1000 repetitions.
biggest_col_sq_norm = m_qr.col(biggest_col_index).tail(rows-k).squaredNorm();
// we store that back into our table: it can't hurt to correct our table.
m_colSqNorms.coeffRef(biggest_col_index) = biggest_col_sq_norm;
// Track the number of meaningful pivots but do not stop the decomposition to make
// sure that the initial matrix is properly reproduced. See bug 941.
if(m_nonzero_pivots==size && biggest_col_sq_norm < threshold_helper * RealScalar(rows-k))
@ -508,7 +510,8 @@ void ColPivHouseholderQR<MatrixType>::computeInPlace()
m_colsTranspositions.coeffRef(k) = biggest_col_index;
if(k != biggest_col_index) {
m_qr.col(k).swap(m_qr.col(biggest_col_index));
std::swap(m_colSqNorms.coeffRef(k), m_colSqNorms.coeffRef(biggest_col_index));
std::swap(m_colNormsUpdated.coeffRef(k), m_colNormsUpdated.coeffRef(biggest_col_index));
std::swap(m_colNormsDirect.coeffRef(k), m_colNormsDirect.coeffRef(biggest_col_index));
++number_of_transpositions;
}
@ -526,8 +529,28 @@ void ColPivHouseholderQR<MatrixType>::computeInPlace()
m_qr.bottomRightCorner(rows-k, cols-k-1)
.applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
// update our table of squared norms of the columns
m_colSqNorms.tail(cols-k-1) -= m_qr.row(k).tail(cols-k-1).cwiseAbs2();
// update our table of norms of the columns
for (Index j = k + 1; j < cols; ++j) {
// The following implements the stable norm downgrade step discussed in
// http://www.netlib.org/lapack/lawnspdf/lawn176.pdf
// and used in LAPACK routines xGEQPF and xGEQP3.
// See lines 278-297 in http://www.netlib.org/lapack/explore-html/dc/df4/sgeqpf_8f_source.html
if (m_colNormsUpdated.coeffRef(j) != 0) {
RealScalar temp = abs(m_qr.coeffRef(k, j)) / m_colNormsUpdated.coeffRef(j);
temp = (RealScalar(1) + temp) * (RealScalar(1) - temp);
temp = temp < 0 ? 0 : temp;
RealScalar temp2 = temp * numext::abs2(m_colNormsUpdated.coeffRef(j) /
m_colNormsDirect.coeffRef(j));
if (temp2 <= norm_downdate_threshold) {
// The updated norm has become too inaccurate so re-compute the column
// norm directly.
m_colNormsDirect.coeffRef(j) = m_qr.col(j).tail(rows - k - 1).norm();
m_colNormsUpdated.coeffRef(j) = m_colNormsDirect.coeffRef(j);
} else {
m_colNormsUpdated.coeffRef(j) *= numext::sqrt(temp);
}
}
}
}
m_colsPermutation.setIdentity(PermIndexType(cols));
@ -578,7 +601,7 @@ struct Assignment<DstXprType, Inverse<ColPivHouseholderQR<MatrixType> >, interna
typedef ColPivHouseholderQR<MatrixType> QrType;
typedef Inverse<QrType> SrcXprType;
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar> &)
{
{
dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
}
};

View File

@ -19,6 +19,7 @@ template<typename MatrixType> void qr()
Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1);
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
MatrixType m1;
createRandomPIMatrixOfRank(rank,rows,cols,m1);
@ -36,6 +37,24 @@ template<typename MatrixType> void qr()
MatrixType c = q * r * qr.colsPermutation().inverse();
VERIFY_IS_APPROX(m1, c);
// Verify that the absolute value of the diagonal elements in R are
// non-increasing until they reach the singularity threshold.
RealScalar threshold =
std::sqrt(RealScalar(rows)) * (std::abs)(r(0, 0)) * NumTraits<Scalar>::epsilon();
for (Index i = 0; i < (std::min)(rows, cols) - 1; ++i) {
RealScalar x = (std::abs)(r(i, i));
RealScalar y = (std::abs)(r(i + 1, i + 1));
if (x < threshold && y < threshold) continue;
if (test_isApproxOrLessThan(x, y)) {
for (Index j = 0; j < (std::min)(rows, cols); ++j) {
std::cout << "i = " << j << ", |r_ii| = " << (std::abs)(r(j, j)) << std::endl;
}
std::cout << "Failure at i=" << i << ", rank=" << rank
<< ", threshold=" << threshold << std::endl;
}
VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
}
MatrixType m2 = MatrixType::Random(cols,cols2);
MatrixType m3 = m1*m2;
m2 = MatrixType::Random(cols,cols2);
@ -47,6 +66,7 @@ template<typename MatrixType, int Cols2> void qr_fixedsize()
{
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
int rank = internal::random<int>(1, (std::min)(int(Rows), int(Cols))-1);
Matrix<Scalar,Rows,Cols> m1;
createRandomPIMatrixOfRank(rank,Rows,Cols,m1);
@ -66,6 +86,67 @@ template<typename MatrixType, int Cols2> void qr_fixedsize()
m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2);
m2 = qr.solve(m3);
VERIFY_IS_APPROX(m3, m1*m2);
// Verify that the absolute value of the diagonal elements in R are
// non-increasing until they reache the singularity threshold.
RealScalar threshold =
std::sqrt(RealScalar(Rows)) * (std::abs)(r(0, 0)) * NumTraits<Scalar>::epsilon();
for (Index i = 0; i < (std::min)(int(Rows), int(Cols)) - 1; ++i) {
RealScalar x = (std::abs)(r(i, i));
RealScalar y = (std::abs)(r(i + 1, i + 1));
if (x < threshold && y < threshold) continue;
if (test_isApproxOrLessThan(x, y)) {
for (Index j = 0; j < (std::min)(int(Rows), int(Cols)); ++j) {
std::cout << "i = " << j << ", |r_ii| = " << (std::abs)(r(j, j)) << std::endl;
}
std::cout << "Failure at i=" << i << ", rank=" << rank
<< ", threshold=" << threshold << std::endl;
}
VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
}
}
// This test is meant to verify that pivots are chosen such that
// even for a graded matrix, the diagonal of R falls of roughly
// monotonically until it reaches the threshold for singularity.
// We use the so-called Kahan matrix, which is a famous counter-example
// for rank-revealing QR. See
// http://www.netlib.org/lapack/lawnspdf/lawn176.pdf
// page 3 for more detail.
template<typename MatrixType> void qr_kahan_matrix()
{
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
Index rows = 300, cols = rows;
MatrixType m1;
m1.setZero(rows,cols);
RealScalar s = std::pow(NumTraits<RealScalar>::epsilon(), 1.0 / rows);
RealScalar c = std::sqrt(1 - s*s);
for (Index i = 0; i < rows; ++i) {
m1(i, i) = pow(s, i);
m1.row(i).tail(rows - i - 1) = -pow(s, i) * c * MatrixType::Ones(1, rows - i - 1);
}
m1 = (m1 + m1.transpose()).eval();
ColPivHouseholderQR<MatrixType> qr(m1);
MatrixType r = qr.matrixQR().template triangularView<Upper>();
RealScalar threshold =
std::sqrt(RealScalar(rows)) * (std::abs)(r(0, 0)) * NumTraits<Scalar>::epsilon();
for (Index i = 0; i < (std::min)(rows, cols) - 1; ++i) {
RealScalar x = (std::abs)(r(i, i));
RealScalar y = (std::abs)(r(i + 1, i + 1));
if (x < threshold && y < threshold) continue;
if (test_isApproxOrLessThan(x, y)) {
for (Index j = 0; j < (std::min)(rows, cols); ++j) {
std::cout << "i = " << j << ", |r_ii| = " << (std::abs)(r(j, j)) << std::endl;
}
std::cout << "Failure at i=" << i << ", rank=" << qr.rank()
<< ", threshold=" << threshold << std::endl;
}
VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
}
}
template<typename MatrixType> void qr_invertible()
@ -147,4 +228,7 @@ void test_qr_colpivoting()
// Test problem size constructors
CALL_SUBTEST_9(ColPivHouseholderQR<MatrixXf>(10, 20));
CALL_SUBTEST_1( qr_kahan_matrix<MatrixXf>() );
CALL_SUBTEST_2( qr_kahan_matrix<MatrixXd>() );
}