mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-03-07 18:27:40 +08:00
merge
This commit is contained in:
commit
b557662e58
@ -132,13 +132,13 @@ template <typename T> class array<T, 0> {
|
||||
return *static_cast<const T*>(NULL);
|
||||
}
|
||||
|
||||
static EIGEN_ALWAYS_INLINE std::size_t size() { return 0; }
|
||||
static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE std::size_t size() { return 0; }
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE array() { }
|
||||
|
||||
#ifdef EIGEN_HAS_VARIADIC_TEMPLATES
|
||||
array(std::initializer_list<T> l) {
|
||||
EIGEN_DEVICE_FUNC array(std::initializer_list<T> l) {
|
||||
eigen_assert(l.size() == 0);
|
||||
}
|
||||
#endif
|
||||
|
@ -238,14 +238,10 @@ struct GpuDevice {
|
||||
|
||||
};
|
||||
|
||||
#ifndef __CUDA_ARCH__
|
||||
#define LAUNCH_CUDA_KERNEL(kernel, gridsize, blocksize, sharedmem, device, ...) \
|
||||
(kernel) <<< (gridsize), (blocksize), (sharedmem), (device).stream() >>> (__VA_ARGS__); \
|
||||
assert(cudaGetLastError() == cudaSuccess);
|
||||
#else
|
||||
#define LAUNCH_CUDA_KERNEL(...) \
|
||||
eigen_assert(false && "Cannot launch a kernel from another kernel");
|
||||
#endif
|
||||
|
||||
|
||||
// FIXME: Should be device and kernel specific.
|
||||
#ifdef __CUDACC__
|
||||
|
@ -156,14 +156,14 @@ template <typename Expression>
|
||||
class TensorExecutor<Expression, GpuDevice, false> {
|
||||
public:
|
||||
typedef typename Expression::Index Index;
|
||||
EIGEN_DEVICE_FUNC static void run(const Expression& expr, const GpuDevice& device);
|
||||
static void run(const Expression& expr, const GpuDevice& device);
|
||||
};
|
||||
|
||||
template <typename Expression>
|
||||
class TensorExecutor<Expression, GpuDevice, true> {
|
||||
public:
|
||||
typedef typename Expression::Index Index;
|
||||
EIGEN_DEVICE_FUNC static void run(const Expression& expr, const GpuDevice& device);
|
||||
static void run(const Expression& expr, const GpuDevice& device);
|
||||
};
|
||||
|
||||
#if defined(__CUDACC__)
|
||||
@ -213,9 +213,8 @@ EigenMetaKernel_Vectorizable(Evaluator memcopied_eval, Index size) {
|
||||
|
||||
/*static*/
|
||||
template <typename Expression>
|
||||
EIGEN_DEVICE_FUNC inline void TensorExecutor<Expression, GpuDevice, false>::run(const Expression& expr, const GpuDevice& device)
|
||||
inline void TensorExecutor<Expression, GpuDevice, false>::run(const Expression& expr, const GpuDevice& device)
|
||||
{
|
||||
#ifndef __CUDA_ARCH__
|
||||
TensorEvaluator<Expression, GpuDevice> evaluator(expr, device);
|
||||
const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
|
||||
if (needs_assign)
|
||||
@ -228,17 +227,13 @@ EIGEN_DEVICE_FUNC inline void TensorExecutor<Expression, GpuDevice, false>::run(
|
||||
LAUNCH_CUDA_KERNEL((EigenMetaKernel_NonVectorizable<TensorEvaluator<Expression, GpuDevice>, Index>), num_blocks, block_size, 0, device, evaluator, size);
|
||||
}
|
||||
evaluator.cleanup();
|
||||
#else
|
||||
eigen_assert(false && "Cannot launch a kernel from another kernel");
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/*static*/
|
||||
template<typename Expression>
|
||||
EIGEN_DEVICE_FUNC inline void TensorExecutor<Expression, GpuDevice, true>::run(const Expression& expr, const GpuDevice& device)
|
||||
inline void TensorExecutor<Expression, GpuDevice, true>::run(const Expression& expr, const GpuDevice& device)
|
||||
{
|
||||
#ifndef __CUDA_ARCH__
|
||||
TensorEvaluator<Expression, GpuDevice> evaluator(expr, device);
|
||||
const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
|
||||
if (needs_assign)
|
||||
@ -251,9 +246,6 @@ EIGEN_DEVICE_FUNC inline void TensorExecutor<Expression, GpuDevice, true>::run(c
|
||||
LAUNCH_CUDA_KERNEL((EigenMetaKernel_Vectorizable<TensorEvaluator<Expression, GpuDevice>, Index>), num_blocks, block_size, 0, device, evaluator, size);
|
||||
}
|
||||
evaluator.cleanup();
|
||||
#else
|
||||
eigen_assert(false && "Cannot launch a kernel from another kernel");
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif // __CUDACC__
|
||||
|
@ -342,7 +342,7 @@ template <typename Self, typename Op, typename Device>
|
||||
struct InnerReducer {
|
||||
static const bool HasOptimizedImplementation = false;
|
||||
|
||||
static EIGEN_DEVICE_FUNC void run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) {
|
||||
static void run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) {
|
||||
assert(false && "Not implemented");
|
||||
}
|
||||
};
|
||||
@ -352,7 +352,7 @@ template <typename Self, typename Op, typename Device>
|
||||
struct OuterReducer {
|
||||
static const bool HasOptimizedImplementation = false;
|
||||
|
||||
static EIGEN_DEVICE_FUNC void run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) {
|
||||
static void run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) {
|
||||
assert(false && "Not implemented");
|
||||
}
|
||||
};
|
||||
@ -506,7 +506,7 @@ struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType>, Device>
|
||||
typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
|
||||
typedef typename internal::remove_const<typename XprType::PacketReturnType>::type PacketReturnType;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
|
||||
EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
|
||||
m_impl.evalSubExprsIfNeeded(NULL);
|
||||
|
||||
// Use the FullReducer if possible.
|
||||
@ -527,7 +527,7 @@ struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType>, Device>
|
||||
}
|
||||
|
||||
// Attempt to use an optimized reduction.
|
||||
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
|
||||
#if 0
|
||||
else if (RunningOnGPU && data && (m_device.majorDeviceVersion() >= 3)) {
|
||||
bool reducing_inner_dims = true;
|
||||
for (int i = 0; i < NumReducedDims; ++i) {
|
||||
@ -537,12 +537,12 @@ struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType>, Device>
|
||||
reducing_inner_dims &= m_reducedDims[NumInputDims - 1 - i];
|
||||
}
|
||||
}
|
||||
if (internal::InnerReducer<Self, Op, GpuDevice>::HasOptimizedImplementation &&
|
||||
if (internal::InnerReducer<Self, Op, Device>::HasOptimizedImplementation &&
|
||||
(reducing_inner_dims || ReducingInnerMostDims)) {
|
||||
const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
|
||||
const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
|
||||
Op reducer(m_reducer);
|
||||
internal::InnerReducer<Self, Op, GpuDevice>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve);
|
||||
internal::InnerReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve);
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -554,12 +554,12 @@ struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType>, Device>
|
||||
preserving_inner_dims &= m_reducedDims[i];
|
||||
}
|
||||
}
|
||||
if (internal::OuterReducer<Self, Op, GpuDevice>::HasOptimizedImplementation &&
|
||||
if (internal::OuterReducer<Self, Op, Device>::HasOptimizedImplementation &&
|
||||
preserving_inner_dims) {
|
||||
const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
|
||||
const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
|
||||
Op reducer(m_reducer);
|
||||
internal::OuterReducer<Self, Op, GpuDevice>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve);
|
||||
internal::OuterReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
@ -115,11 +115,11 @@ struct FullReducer<Self, Op, GpuDevice, Vectorizable> {
|
||||
internal::is_same<typename Self::CoeffReturnType, float>::value;
|
||||
|
||||
template <typename OutputType>
|
||||
EIGEN_DEVICE_FUNC static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output) {
|
||||
static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output) {
|
||||
assert(false && "Should only be called on floats");
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC static void run(const Self& self, Op& reducer, const GpuDevice& device, float* output) {
|
||||
static void run(const Self& self, Op& reducer, const GpuDevice& device, float* output) {
|
||||
typedef typename Self::Index Index;
|
||||
|
||||
const Index num_coeffs = array_prod(self.m_impl.dimensions());
|
||||
|
Loading…
Reference in New Issue
Block a user