The Eigen2 intrusive std::vector hack really can't be supported in eigen3 (bug #215)

This commit is contained in:
Benoit Jacob 2011-03-04 10:24:41 -05:00
parent 56818d907e
commit b43d92a5a2
3 changed files with 17 additions and 3 deletions

View File

@ -21,6 +21,7 @@ and gives tips to help porting your application from Eigen2 to Eigen3.
- \ref LazyVsNoalias - \ref LazyVsNoalias
- \ref AlignMacros - \ref AlignMacros
- \ref AlignedMap - \ref AlignedMap
- \ref StdContainers
- \ref eiPrefix - \ref eiPrefix
\section CompatibilitySupport Eigen2 compatibility support \section CompatibilitySupport Eigen2 compatibility support
@ -295,6 +296,18 @@ There also are related convenience static methods, which actually are the prefer
result = Vector4f::MapAligned(some_aligned_array); result = Vector4f::MapAligned(some_aligned_array);
\endcode \endcode
\section StdContainers STL Containers
In Eigen2, #include<Eigen/StdVector> tweaked std::vector to automatically align elements. The problem was that that was quite invasive. In Eigen3, we only override standard behavior if you use Eigen::aligned_allocator<T> as your allocator type. So for example, if you use std::vector<Matrix4f>, you need to do the following change (note that aligned_allocator is under namespace Eigen):
<table class="manual">
<tr><th>Eigen 2</th><th>Eigen 3</th></tr>
<tr>
<td> \code std::vector<Matrix4f> \endcode </td>
<td> \code std::vector<Matrix4f, aligned_allocator<Matrix4f> > \endcode </td>
</tr>
</table>
\section eiPrefix Internal ei_ prefix \section eiPrefix Internal ei_ prefix
In Eigen2, global internal functions and structures were prefixed by \c ei_. In Eigen3, they all have been moved into the more explicit \c internal namespace. So, e.g., \c ei_sqrt(x) now becomes \c internal::sqrt(x). Of course it is not recommended to rely on Eigen's internal features. In Eigen2, global internal functions and structures were prefixed by \c ei_. In Eigen3, they all have been moved into the more explicit \c internal namespace. So, e.g., \c ei_sqrt(x) now becomes \c internal::sqrt(x). Of course it is not recommended to rely on Eigen's internal features.

View File

@ -47,6 +47,7 @@ The parts of the API that are still not 100% Eigen 2 compatible in this mode are
\li Dot products over complex numbers. Eigen 2's dot product was linear in the first variable. Eigen 3's dot product is linear in the second variable. In other words, the Eigen 2 code \code x.dot(y) \endcode is equivalent to the Eigen 3 code \code y.dot(x) \endcode In yet other words, dot products are complex-conjugated in Eigen 3 compared to Eigen 2. The switch to the new convention was commanded by common usage, especially with the notation \f$ x^Ty \f$ for dot products of column-vectors. \li Dot products over complex numbers. Eigen 2's dot product was linear in the first variable. Eigen 3's dot product is linear in the second variable. In other words, the Eigen 2 code \code x.dot(y) \endcode is equivalent to the Eigen 3 code \code y.dot(x) \endcode In yet other words, dot products are complex-conjugated in Eigen 3 compared to Eigen 2. The switch to the new convention was commanded by common usage, especially with the notation \f$ x^Ty \f$ for dot products of column-vectors.
\li The Sparse module. \li The Sparse module.
\li Certain fine details of linear algebraic decompositions. For example, LDLT decomposition is now pivoting in Eigen 3 whereas it wasn't in Eigen 2, so code that was relying on its underlying matrix structure will break. \li Certain fine details of linear algebraic decompositions. For example, LDLT decomposition is now pivoting in Eigen 3 whereas it wasn't in Eigen 2, so code that was relying on its underlying matrix structure will break.
\li Usage of Eigen types in STL containers, \ref Eigen2ToEigen3 "as explained on this page".
\section Stage20 Stage 20: define EIGEN2_SUPPORT_STAGE20_RESOLVE_API_CONFLICTS \section Stage20 Stage 20: define EIGEN2_SUPPORT_STAGE20_RESOLVE_API_CONFLICTS

View File

@ -32,7 +32,7 @@ void check_stdvector_matrix(const MatrixType& m)
int rows = m.rows(); int rows = m.rows();
int cols = m.cols(); int cols = m.cols();
MatrixType x = MatrixType::Random(rows,cols), y = MatrixType::Random(rows,cols); MatrixType x = MatrixType::Random(rows,cols), y = MatrixType::Random(rows,cols);
std::vector<MatrixType> v(10, MatrixType(rows,cols)), w(20, y); std::vector<MatrixType, aligned_allocator<MatrixType> > v(10, MatrixType(rows,cols)), w(20, y);
v[5] = x; v[5] = x;
w[6] = v[5]; w[6] = v[5];
VERIFY_IS_APPROX(w[6], v[5]); VERIFY_IS_APPROX(w[6], v[5]);
@ -67,7 +67,7 @@ void check_stdvector_transform(const TransformType&)
{ {
typedef typename TransformType::MatrixType MatrixType; typedef typename TransformType::MatrixType MatrixType;
TransformType x(MatrixType::Random()), y(MatrixType::Random()); TransformType x(MatrixType::Random()), y(MatrixType::Random());
std::vector<TransformType> v(10), w(20, y); std::vector<TransformType, aligned_allocator<TransformType> > v(10), w(20, y);
v[5] = x; v[5] = x;
w[6] = v[5]; w[6] = v[5];
VERIFY_IS_APPROX(w[6], v[5]); VERIFY_IS_APPROX(w[6], v[5]);
@ -102,7 +102,7 @@ void check_stdvector_quaternion(const QuaternionType&)
{ {
typedef typename QuaternionType::Coefficients Coefficients; typedef typename QuaternionType::Coefficients Coefficients;
QuaternionType x(Coefficients::Random()), y(Coefficients::Random()); QuaternionType x(Coefficients::Random()), y(Coefficients::Random());
std::vector<QuaternionType> v(10), w(20, y); std::vector<QuaternionType, aligned_allocator<QuaternionType> > v(10), w(20, y);
v[5] = x; v[5] = x;
w[6] = v[5]; w[6] = v[5];
VERIFY_IS_APPROX(w[6], v[5]); VERIFY_IS_APPROX(w[6], v[5]);