Implement wrapper for matrix-free iterative solvers

This commit is contained in:
Gael Guennebaud 2015-12-07 12:23:22 +01:00
parent f4ca8ad917
commit b37036afce
10 changed files with 189 additions and 51 deletions

View File

@ -237,7 +237,6 @@ protected:
EIGEN_DEVICE_FUNC ~noncopyable() {}
};
/** \internal
* Convenient struct to get the result type of a unary or binary functor.
*

View File

@ -95,7 +95,8 @@
IMPLICIT_CONVERSION_TO_SCALAR_IS_FOR_INNER_PRODUCT_ONLY,
STORAGE_LAYOUT_DOES_NOT_MATCH,
EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT__INVALID_COST_VALUE,
THIS_COEFFICIENT_ACCESSOR_TAKING_ONE_ACCESS_IS_ONLY_FOR_EXPRESSIONS_ALLOWING_LINEAR_ACCESS
THIS_COEFFICIENT_ACCESSOR_TAKING_ONE_ACCESS_IS_ONLY_FOR_EXPRESSIONS_ALLOWING_LINEAR_ACCESS,
MATRIX_FREE_CONJUGATE_GRADIENT_IS_COMPATIBLE_WITH_UPPER_UNION_LOWER_MODE_ONLY
};
};

View File

@ -156,7 +156,7 @@ template< typename _MatrixType, typename _Preconditioner>
class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<_MatrixType,_Preconditioner> >
{
typedef IterativeSolverBase<BiCGSTAB> Base;
using Base::mp_matrix;
using Base::matrix;
using Base::m_error;
using Base::m_iterations;
using Base::m_info;
@ -198,7 +198,7 @@ public:
m_error = Base::m_tolerance;
typename Dest::ColXpr xj(x,j);
if(!internal::bicgstab(mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_error))
if(!internal::bicgstab(matrix(), b.col(j), xj, Base::m_preconditioner, m_iterations, m_error))
failed = true;
}
m_info = failed ? NumericalIssue

View File

@ -149,13 +149,15 @@ struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
* By default the iterations start with x=0 as an initial guess of the solution.
* One can control the start using the solveWithGuess() method.
*
* ConjugateGradient can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
*
* \sa class LeastSquaresConjugateGradient, class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
*/
template< typename _MatrixType, int _UpLo, typename _Preconditioner>
class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
{
typedef IterativeSolverBase<ConjugateGradient> Base;
using Base::mp_matrix;
using Base::matrix;
using Base::m_error;
using Base::m_iterations;
using Base::m_info;
@ -194,12 +196,19 @@ public:
template<typename Rhs,typename Dest>
void _solve_with_guess_impl(const Rhs& b, Dest& x) const
{
typedef Ref<const MatrixType> MatRef;
typedef typename internal::conditional<UpLo==(Lower|Upper) && (!MatrixType::IsRowMajor) && (!NumTraits<Scalar>::IsComplex),
Transpose<const MatRef>, MatRef const&>::type RowMajorWrapper;
typedef typename Base::MatrixWrapper MatrixWrapper;
typedef typename Base::ActualMatrixType ActualMatrixType;
enum {
TransposeInput = (!MatrixWrapper::MatrixFree)
&& (UpLo==(Lower|Upper))
&& (!MatrixType::IsRowMajor)
&& (!NumTraits<Scalar>::IsComplex)
};
typedef typename internal::conditional<TransposeInput,Transpose<const ActualMatrixType>, ActualMatrixType const&>::type RowMajorWrapper;
EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(MatrixWrapper::MatrixFree,UpLo==(Lower|Upper)),MATRIX_FREE_CONJUGATE_GRADIENT_IS_COMPATIBLE_WITH_UPPER_UNION_LOWER_MODE_ONLY);
typedef typename internal::conditional<UpLo==(Lower|Upper),
RowMajorWrapper,
typename MatRef::template ConstSelfAdjointViewReturnType<UpLo>::Type
typename MatrixWrapper::template ConstSelfAdjointViewReturnType<UpLo>::Type
>::type SelfAdjointWrapper;
m_iterations = Base::maxIterations();
m_error = Base::m_tolerance;
@ -210,7 +219,7 @@ public:
m_error = Base::m_tolerance;
typename Dest::ColXpr xj(x,j);
RowMajorWrapper row_mat(mp_matrix);
RowMajorWrapper row_mat(matrix());
internal::conjugate_gradient(SelfAdjointWrapper(row_mat), b.col(j), xj, Base::m_preconditioner, m_iterations, m_error);
}

View File

@ -12,6 +12,128 @@
namespace Eigen {
namespace internal {
template<typename MatrixType>
struct is_ref_compatible_impl
{
private:
template <typename T0>
struct any_conversion
{
template <typename T> any_conversion(const volatile T&);
template <typename T> any_conversion(T&);
};
struct yes {int a[1];};
struct no {int a[2];};
template<typename T>
static yes test(const Ref<const T>&, int);
template<typename T>
static no test(any_conversion<T>, ...);
public:
static MatrixType ms_from;
enum { value = sizeof(test<MatrixType>(ms_from, 0))==sizeof(yes) };
};
template<typename MatrixType>
struct is_ref_compatible
{
enum { value = is_ref_compatible_impl<typename remove_all<MatrixType>::type>::value };
};
template<typename MatrixType, bool MatrixFree = !internal::is_ref_compatible<MatrixType>::value>
class generic_matrix_wrapper;
// We have an explicit matrix at hand, compatible with Ref<>
template<typename MatrixType>
class generic_matrix_wrapper<MatrixType,false>
{
public:
typedef Ref<const MatrixType> ActualMatrixType;
template<int UpLo> struct ConstSelfAdjointViewReturnType {
typedef typename ActualMatrixType::template ConstSelfAdjointViewReturnType<UpLo>::Type Type;
};
enum {
MatrixFree = false
};
generic_matrix_wrapper()
: m_dummy(0,0), m_matrix(m_dummy)
{}
template<typename InputType>
generic_matrix_wrapper(const InputType &mat)
: m_matrix(mat)
{}
const ActualMatrixType& matrix() const
{
return m_matrix;
}
template<typename MatrixDerived>
void grab(const EigenBase<MatrixDerived> &mat)
{
m_matrix.~Ref<const MatrixType>();
::new (&m_matrix) Ref<const MatrixType>(mat.derived());
}
void grab(const Ref<const MatrixType> &mat)
{
if(&(mat.derived()) != &m_matrix)
{
m_matrix.~Ref<const MatrixType>();
::new (&m_matrix) Ref<const MatrixType>(mat);
}
}
protected:
MatrixType m_dummy; // used to default initialize the Ref<> object
ActualMatrixType m_matrix;
};
// MatrixType is not compatible with Ref<> -> matrix-free wrapper
template<typename MatrixType>
class generic_matrix_wrapper<MatrixType,true>
{
public:
typedef MatrixType ActualMatrixType;
template<int UpLo> struct ConstSelfAdjointViewReturnType
{
typedef ActualMatrixType Type;
};
enum {
MatrixFree = true
};
generic_matrix_wrapper()
: mp_matrix(0)
{}
generic_matrix_wrapper(const MatrixType &mat)
: mp_matrix(&mat)
{}
const ActualMatrixType& matrix() const
{
return *mp_matrix;
}
void grab(const MatrixType &mat)
{
mp_matrix = &mat;
}
protected:
const ActualMatrixType *mp_matrix;
};
}
/** \ingroup IterativeLinearSolvers_Module
* \brief Base class for linear iterative solvers
*
@ -42,7 +164,6 @@ public:
/** Default constructor. */
IterativeSolverBase()
: m_dummy(0,0), mp_matrix(m_dummy)
{
init();
}
@ -59,10 +180,10 @@ public:
*/
template<typename MatrixDerived>
explicit IterativeSolverBase(const EigenBase<MatrixDerived>& A)
: mp_matrix(A.derived())
: m_matrixWrapper(A.derived())
{
init();
compute(mp_matrix);
compute(matrix());
}
~IterativeSolverBase() {}
@ -76,7 +197,7 @@ public:
Derived& analyzePattern(const EigenBase<MatrixDerived>& A)
{
grab(A.derived());
m_preconditioner.analyzePattern(mp_matrix);
m_preconditioner.analyzePattern(matrix());
m_isInitialized = true;
m_analysisIsOk = true;
m_info = m_preconditioner.info();
@ -97,7 +218,7 @@ public:
{
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
grab(A.derived());
m_preconditioner.factorize(mp_matrix);
m_preconditioner.factorize(matrix());
m_factorizationIsOk = true;
m_info = m_preconditioner.info();
return derived();
@ -117,7 +238,7 @@ public:
Derived& compute(const EigenBase<MatrixDerived>& A)
{
grab(A.derived());
m_preconditioner.compute(mp_matrix);
m_preconditioner.compute(matrix());
m_isInitialized = true;
m_analysisIsOk = true;
m_factorizationIsOk = true;
@ -126,10 +247,10 @@ public:
}
/** \internal */
Index rows() const { return mp_matrix.rows(); }
Index rows() const { return matrix().rows(); }
/** \internal */
Index cols() const { return mp_matrix.cols(); }
Index cols() const { return matrix().cols(); }
/** \returns the tolerance threshold used by the stopping criteria.
* \sa setTolerance()
@ -159,7 +280,7 @@ public:
*/
Index maxIterations() const
{
return (m_maxIterations<0) ? 2*mp_matrix.cols() : m_maxIterations;
return (m_maxIterations<0) ? 2*matrix().cols() : m_maxIterations;
}
/** Sets the max number of iterations.
@ -239,25 +360,22 @@ protected:
m_maxIterations = -1;
m_tolerance = NumTraits<Scalar>::epsilon();
}
template<typename MatrixDerived>
void grab(const EigenBase<MatrixDerived> &A)
typedef internal::generic_matrix_wrapper<MatrixType> MatrixWrapper;
typedef typename MatrixWrapper::ActualMatrixType ActualMatrixType;
const ActualMatrixType& matrix() const
{
mp_matrix.~Ref<const MatrixType>();
::new (&mp_matrix) Ref<const MatrixType>(A.derived());
return m_matrixWrapper.matrix();
}
void grab(const Ref<const MatrixType> &A)
template<typename InputType>
void grab(const InputType &A)
{
if(&(A.derived()) != &mp_matrix)
{
mp_matrix.~Ref<const MatrixType>();
::new (&mp_matrix) Ref<const MatrixType>(A);
}
m_matrixWrapper.grab(A);
}
MatrixType m_dummy;
Ref<const MatrixType> mp_matrix;
MatrixWrapper m_matrixWrapper;
Preconditioner m_preconditioner;
Index m_maxIterations;

View File

@ -149,7 +149,7 @@ template< typename _MatrixType, typename _Preconditioner>
class LeastSquaresConjugateGradient : public IterativeSolverBase<LeastSquaresConjugateGradient<_MatrixType,_Preconditioner> >
{
typedef IterativeSolverBase<LeastSquaresConjugateGradient> Base;
using Base::mp_matrix;
using Base::matrix;
using Base::m_error;
using Base::m_iterations;
using Base::m_info;
@ -193,7 +193,7 @@ public:
m_error = Base::m_tolerance;
typename Dest::ColXpr xj(x,j);
internal::least_square_conjugate_gradient(mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_error);
internal::least_square_conjugate_gradient(matrix(), b.col(j), xj, Base::m_preconditioner, m_iterations, m_error);
}
m_isInitialized = true;

View File

@ -33,6 +33,7 @@
#include "../../Eigen/Jacobi"
#include "../../Eigen/Householder"
#include "src/IterativeSolvers/GMRES.h"
#include "src/IterativeSolvers/DGMRES.h"
//#include "src/IterativeSolvers/SSORPreconditioner.h"
#include "src/IterativeSolvers/MINRES.h"

View File

@ -40,7 +40,6 @@ void sortWithPermutation (VectorType& vec, IndexType& perm, typename IndexType::
{
eigen_assert(vec.size() == perm.size());
typedef typename IndexType::Scalar Index;
typedef typename VectorType::Scalar Scalar;
bool flag;
for (Index k = 0; k < ncut; k++)
{
@ -101,7 +100,7 @@ template< typename _MatrixType, typename _Preconditioner>
class DGMRES : public IterativeSolverBase<DGMRES<_MatrixType,_Preconditioner> >
{
typedef IterativeSolverBase<DGMRES> Base;
using Base::mp_matrix;
using Base::matrix;
using Base::m_error;
using Base::m_iterations;
using Base::m_info;
@ -112,6 +111,7 @@ class DGMRES : public IterativeSolverBase<DGMRES<_MatrixType,_Preconditioner> >
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
typedef typename MatrixType::StorageIndex StorageIndex;
typedef typename MatrixType::RealScalar RealScalar;
typedef _Preconditioner Preconditioner;
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
@ -150,7 +150,7 @@ class DGMRES : public IterativeSolverBase<DGMRES<_MatrixType,_Preconditioner> >
m_error = Base::m_tolerance;
typename Dest::ColXpr xj(x,j);
dgmres(mp_matrix, b.col(j), xj, Base::m_preconditioner);
dgmres(matrix(), b.col(j), xj, Base::m_preconditioner);
}
m_info = failed ? NumericalIssue
: m_error <= Base::m_tolerance ? Success
@ -202,7 +202,7 @@ class DGMRES : public IterativeSolverBase<DGMRES<_MatrixType,_Preconditioner> >
template<typename Dest>
int dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, int& nbIts) const;
// Compute data to use for deflation
int dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, Index& neig) const;
int dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, StorageIndex& neig) const;
// Apply deflation to a vector
template<typename RhsType, typename DestType>
int dgmresApplyDeflation(const RhsType& In, DestType& Out) const;
@ -218,7 +218,7 @@ class DGMRES : public IterativeSolverBase<DGMRES<_MatrixType,_Preconditioner> >
mutable DenseMatrix m_MU; // matrix operator applied to m_U (for next cycles)
mutable DenseMatrix m_T; /* T=U^T*M^{-1}*A*U */
mutable PartialPivLU<DenseMatrix> m_luT; // LU factorization of m_T
mutable int m_neig; //Number of eigenvalues to extract at each restart
mutable StorageIndex m_neig; //Number of eigenvalues to extract at each restart
mutable int m_r; // Current number of deflated eigenvalues, size of m_U
mutable int m_maxNeig; // Maximum number of eigenvalues to deflate
mutable RealScalar m_lambdaN; //Modulus of the largest eigenvalue of A
@ -338,7 +338,7 @@ int DGMRES<_MatrixType, _Preconditioner>::dgmresCycle(const MatrixType& mat, con
beta = std::abs(g(it+1));
m_error = beta/normRhs;
std::cerr << nbIts << " Relative Residual Norm " << m_error << std::endl;
// std::cerr << nbIts << " Relative Residual Norm " << m_error << std::endl;
it++; nbIts++;
if (m_error < m_tolerance)
@ -416,7 +416,7 @@ inline typename DGMRES<_MatrixType, _Preconditioner>::ComplexVector DGMRES<_Matr
}
template< typename _MatrixType, typename _Preconditioner>
int DGMRES<_MatrixType, _Preconditioner>::dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, Index& neig) const
int DGMRES<_MatrixType, _Preconditioner>::dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, StorageIndex& neig) const
{
// First, find the Schur form of the Hessenberg matrix H
typename internal::conditional<NumTraits<Scalar>::IsComplex, ComplexSchur<DenseMatrix>, RealSchur<DenseMatrix> >::type schurofH;
@ -426,7 +426,7 @@ int DGMRES<_MatrixType, _Preconditioner>::dgmresComputeDeflationData(const Matri
schurofH.computeFromHessenberg(m_Hes.topLeftCorner(it,it), matrixQ, computeU);
ComplexVector eig(it);
Matrix<Index,Dynamic,1>perm(it);
Matrix<StorageIndex,Dynamic,1>perm(it);
eig = this->schurValues(schurofH);
// Reorder the absolute values of Schur values

View File

@ -257,7 +257,7 @@ template< typename _MatrixType, typename _Preconditioner>
class GMRES : public IterativeSolverBase<GMRES<_MatrixType,_Preconditioner> >
{
typedef IterativeSolverBase<GMRES> Base;
using Base::mp_matrix;
using Base::matrix;
using Base::m_error;
using Base::m_iterations;
using Base::m_info;
@ -313,7 +313,7 @@ public:
m_error = Base::m_tolerance;
typename Dest::ColXpr xj(x,j);
if(!internal::gmres(mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_restart, m_error))
if(!internal::gmres(matrix(), b.col(j), xj, Base::m_preconditioner, m_iterations, m_restart, m_error))
failed = true;
}
m_info = failed ? NumericalIssue

View File

@ -198,7 +198,7 @@ namespace Eigen {
{
typedef IterativeSolverBase<MINRES> Base;
using Base::mp_matrix;
using Base::matrix;
using Base::m_error;
using Base::m_iterations;
using Base::m_info;
@ -237,21 +237,31 @@ namespace Eigen {
template<typename Rhs,typename Dest>
void _solve_with_guess_impl(const Rhs& b, Dest& x) const
{
typedef typename Base::MatrixWrapper MatrixWrapper;
typedef typename Base::ActualMatrixType ActualMatrixType;
enum {
TransposeInput = (!MatrixWrapper::MatrixFree)
&& (UpLo==(Lower|Upper))
&& (!MatrixType::IsRowMajor)
&& (!NumTraits<Scalar>::IsComplex)
};
typedef typename internal::conditional<TransposeInput,Transpose<const ActualMatrixType>, ActualMatrixType const&>::type RowMajorWrapper;
EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(MatrixWrapper::MatrixFree,UpLo==(Lower|Upper)),MATRIX_FREE_CONJUGATE_GRADIENT_IS_COMPATIBLE_WITH_UPPER_UNION_LOWER_MODE_ONLY);
typedef typename internal::conditional<UpLo==(Lower|Upper),
Ref<const MatrixType>&,
SparseSelfAdjointView<const Ref<const MatrixType>, UpLo>
>::type MatrixWrapperType;
RowMajorWrapper,
typename MatrixWrapper::template ConstSelfAdjointViewReturnType<UpLo>::Type
>::type SelfAdjointWrapper;
m_iterations = Base::maxIterations();
m_error = Base::m_tolerance;
RowMajorWrapper row_mat(matrix());
for(int j=0; j<b.cols(); ++j)
{
m_iterations = Base::maxIterations();
m_error = Base::m_tolerance;
typename Dest::ColXpr xj(x,j);
internal::minres(MatrixWrapperType(mp_matrix), b.col(j), xj,
internal::minres(SelfAdjointWrapper(row_mat), b.col(j), xj,
Base::m_preconditioner, m_iterations, m_error);
}