Evaluators: Implement linear traversal, better testing.

This commit is contained in:
Jitse Niesen 2011-03-27 22:08:48 +01:00
parent 1b17a674dd
commit b175bc464f
3 changed files with 122 additions and 8 deletions

View File

@ -78,8 +78,8 @@ public:
enum {
Traversal = int(MayInnerVectorize) ? int(InnerVectorizedTraversal)
: int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
: int(MaySliceVectorize) ? int(DefaultTraversal) // int(SliceVectorizedTraversal)
: int(MayLinearize) ? int(DefaultTraversal) // int(LinearTraversal)
: int(MaySliceVectorize) ? int(SliceVectorizedTraversal)
: int(MayLinearize) ? int(LinearTraversal)
: int(DefaultTraversal),
Vectorized = int(Traversal) == InnerVectorizedTraversal
|| int(Traversal) == LinearVectorizedTraversal
@ -264,12 +264,37 @@ struct copy_using_evaluator_impl<DstXprType, SrcXprType, InnerVectorizedTraversa
}
};
/***********************
*** Linear traversal ***
***********************/
template<typename DstXprType, typename SrcXprType>
struct copy_using_evaluator_impl<DstXprType, SrcXprType, LinearTraversal, NoUnrolling>
{
inline static void run(const DstXprType &dst, const SrcXprType &src)
{
typedef typename evaluator<DstXprType>::type DstEvaluatorType;
typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
typedef typename DstXprType::Index Index;
DstEvaluatorType dstEvaluator(dst.const_cast_derived());
SrcEvaluatorType srcEvaluator(src);
const Index size = dst.size();
for(Index i = 0; i < size; ++i)
dstEvaluator.coeffRef(i) = srcEvaluator.coeff(i); // TODO: use copyCoeff ?
}
};
// Based on DenseBase::LazyAssign()
template<typename DstXprType, typename SrcXprType>
const DstXprType& copy_using_evaluator(const DstXprType& dst, const SrcXprType& src)
{
#ifdef EIGEN_DEBUG_ASSIGN
internal::copy_using_evaluator_traits<DstXprType, SrcXprType>::debug();
#endif
copy_using_evaluator_impl<DstXprType, SrcXprType>::run(dst, src);
return dst;
}

View File

@ -60,11 +60,21 @@ struct evaluator_impl<Transpose<ExpressionType> >
return m_argImpl.coeff(j, i);
}
typename TransposeType::CoeffReturnType coeff(Index index) const
{
return m_argImpl.coeff(index);
}
typename TransposeType::Scalar& coeffRef(Index i, Index j)
{
return m_argImpl.coeffRef(j, i);
}
typename TransposeType::Scalar& coeffRef(Index index)
{
return m_argImpl.coeffRef(index);
}
template<int LoadMode>
const typename ExpressionType::PacketScalar packet(Index index) const
{
@ -79,12 +89,11 @@ struct evaluator_impl<Transpose<ExpressionType> >
return m_argImpl.template packetByOuterInner<LoadMode>(outer, inner);
}
// TODO: Is this function needed?
// template<int StoreMode>
// void writePacket(Index index, const typename ExpressionType::PacketScalar& x)
// {
// m_argImpl.template writePacket<StoreMode>(index, x);
// }
template<int StoreMode>
void writePacket(Index index, const typename ExpressionType::PacketScalar& x)
{
m_argImpl.template writePacket<StoreMode>(index, x);
}
template<int StoreMode>
void writePacketByOuterInner(Index outer, Index inner, const typename ExpressionType::PacketScalar& x)
@ -122,11 +131,21 @@ struct evaluator_impl<Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
return m_matrix.coeff(i, j);
}
typename MatrixType::CoeffReturnType coeff(Index index) const
{
return m_matrix.coeff(index);
}
typename MatrixType::Scalar& coeffRef(Index i, Index j)
{
return m_matrix.const_cast_derived().coeffRef(i, j);
}
typename MatrixType::Scalar& coeffRef(Index index)
{
return m_matrix.const_cast_derived().coeffRef(index);
}
template<int LoadMode>
typename MatrixType::PacketReturnType packet(Index index) const
{
@ -191,6 +210,11 @@ struct evaluator_impl<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
return m_array.const_cast_derived().coeffRef(i, j);
}
typename ArrayType::Scalar& coeffRef(Index index)
{
return m_array.const_cast_derived().coeffRef(index);
}
template<int LoadMode>
typename ArrayType::PacketReturnType packet(Index index) const
{
@ -243,6 +267,11 @@ struct evaluator_impl<CwiseNullaryOp<NullaryOp,PlainObjectType> >
return m_nullaryOp.coeff(i, j);
}
typename NullaryOpType::CoeffReturnType coeff(Index index) const
{
return m_nullaryOp.coeff(index);
}
template<int LoadMode>
typename NullaryOpType::PacketScalar packet(Index index) const
{
@ -269,6 +298,11 @@ struct evaluator_impl<CwiseUnaryOp<UnaryOp, ArgType> >
return m_unaryOp.functor()(m_argImpl.coeff(i, j));
}
typename UnaryOpType::CoeffReturnType coeff(Index index) const
{
return m_unaryOp.functor()(m_argImpl.coeff(index));
}
template<int LoadMode>
typename UnaryOpType::PacketScalar packet(Index index) const
{
@ -309,6 +343,11 @@ struct evaluator_impl<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
return m_binaryOp.functor()(m_lhsImpl.coeff(i, j), m_rhsImpl.coeff(i, j));
}
typename BinaryOpType::CoeffReturnType coeff(Index index) const
{
return m_binaryOp.functor()(m_lhsImpl.coeff(index), m_rhsImpl.coeff(index));
}
template<int LoadMode>
typename BinaryOpType::PacketScalar packet(Index index) const
{
@ -316,6 +355,20 @@ struct evaluator_impl<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
m_rhsImpl.template packet<LoadMode>(index));
}
template<int LoadMode>
typename BinaryOpType::PacketScalar packet(Index row, Index col) const
{
return m_binaryOp.functor().packetOp(m_lhsImpl.template packet<LoadMode>(row, col),
m_rhsImpl.template packet<LoadMode>(row, col));
}
template<int LoadMode>
typename BinaryOpType::PacketScalar packetByOuterInner(Index outer, Index inner) const
{
return packet<LoadMode>(m_lhsImpl.rowIndexByOuterInner(outer, inner),
m_lhsImpl.colIndexByOuterInner(outer, inner));
}
protected:
const BinaryOpType& m_binaryOp;
typename evaluator<Lhs>::type m_lhsImpl;

View File

@ -89,4 +89,40 @@ void test_evaluators()
ArrayXXd arr1(6,6), arr2(6,6);
VERIFY_IS_APPROX_EVALUATOR(arr1, ArrayXXd::Constant(6,6, 3.0));
VERIFY_IS_APPROX_EVALUATOR(arr2, arr1);
// test direct traversal
Matrix3f m3;
Array33f a3;
VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity()); // matrix, nullary
// TODO: find a way to test direct traversal with array
VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Identity().transpose()); // transpose
VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Identity()); // unary
VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity() + m3); // binary
// test linear traversal
VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero()); // matrix, nullary
VERIFY_IS_APPROX_EVALUATOR(a3, Array33f::Zero()); // array
VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Zero().transpose()); // transpose
VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Zero()); // unary
VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero() + m3); // binary
// test inner vectorization
Matrix4f m4, m4src = Matrix4f::Random();
Array44f a4, a4src = Matrix4f::Random();
VERIFY_IS_APPROX_EVALUATOR(m4, m4src); // matrix
VERIFY_IS_APPROX_EVALUATOR(a4, a4src); // array
VERIFY_IS_APPROX_EVALUATOR(m4.transpose(), m4src.transpose()); // transpose
// TODO: find out why Matrix4f::Zero() does not allow inner vectorization
VERIFY_IS_APPROX_EVALUATOR(m4, 2 * m4src); // unary
VERIFY_IS_APPROX_EVALUATOR(m4, m4src + m4src); // binary
// test linear vectorization
MatrixXf mX(6,6), mXsrc = MatrixXf::Random(6,6);
ArrayXXf aX(6,6), aXsrc = MatrixXf::Random(6,6);
VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc); // matrix
VERIFY_IS_APPROX_EVALUATOR(aX, aXsrc); // array
VERIFY_IS_APPROX_EVALUATOR(mX.transpose(), mXsrc.transpose()); // transpose
VERIFY_IS_APPROX_EVALUATOR(mX, MatrixXf::Zero(6,6)); // nullary
VERIFY_IS_APPROX_EVALUATOR(mX, 2 * mXsrc); // unary
VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc + mXsrc); // binary
}