mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
bug #1004: remove the inaccurate "sequential" path for LinSpaced, mark respective function as deprecated, and enforce strict interpolation of the higher range using a correction term.
Now, even with floating point precision, both the 'low' and 'high' bounds are exactly reproduced at i=0 and i=size-1 respectively.
This commit is contained in:
parent
b11aab5fcc
commit
b027d7a8cf
@ -215,42 +215,29 @@ DenseBase<Derived>::Constant(const Scalar& value)
|
||||
return DenseBase<Derived>::NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_constant_op<Scalar>(value));
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Sets a linearly spaced vector.
|
||||
/** \deprecated because of accuracy loss. In Eigen 3.3, it is an alias for LinSpaced(Index,const Scalar&,const Scalar&)
|
||||
*
|
||||
* The function generates 'size' equally spaced values in the closed interval [low,high].
|
||||
* This particular version of LinSpaced() uses sequential access, i.e. vector access is
|
||||
* assumed to be a(0), a(1), ..., a(size-1). This assumption allows for better vectorization
|
||||
* and yields faster code than the random access version.
|
||||
*
|
||||
* When size is set to 1, a vector of length 1 containing 'high' is returned.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* Example: \include DenseBase_LinSpaced_seq.cpp
|
||||
* Output: \verbinclude DenseBase_LinSpaced_seq.out
|
||||
*
|
||||
* \sa setLinSpaced(Index,const Scalar&,const Scalar&), LinSpaced(Index,Scalar,Scalar), CwiseNullaryOp
|
||||
* \sa LinSpaced(Index,Scalar,Scalar), setLinSpaced(Index,const Scalar&,const Scalar&)
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::SequentialLinSpacedReturnType
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
|
||||
DenseBase<Derived>::LinSpaced(Sequential_t, Index size, const Scalar& low, const Scalar& high)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return DenseBase<Derived>::NullaryExpr(size, internal::linspaced_op<Scalar,PacketScalar,false>(low,high,size));
|
||||
return DenseBase<Derived>::NullaryExpr(size, internal::linspaced_op<Scalar,PacketScalar>(low,high,size));
|
||||
}
|
||||
|
||||
/**
|
||||
* \copydoc DenseBase::LinSpaced(Sequential_t, Index, const Scalar&, const Scalar&)
|
||||
* Special version for fixed size types which does not require the size parameter.
|
||||
/** \deprecated because of accuracy loss. In Eigen 3.3, it is an alias for LinSpaced(const Scalar&,const Scalar&)
|
||||
*
|
||||
* \sa LinSpaced(Scalar,Scalar)
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::SequentialLinSpacedReturnType
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
|
||||
DenseBase<Derived>::LinSpaced(Sequential_t, const Scalar& low, const Scalar& high)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
|
||||
return DenseBase<Derived>::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op<Scalar,PacketScalar,false>(low,high,Derived::SizeAtCompileTime));
|
||||
return DenseBase<Derived>::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op<Scalar,PacketScalar>(low,high,Derived::SizeAtCompileTime));
|
||||
}
|
||||
|
||||
/**
|
||||
@ -274,14 +261,14 @@ DenseBase<Derived>::LinSpaced(Sequential_t, const Scalar& low, const Scalar& hig
|
||||
* Example: \include DenseBase_LinSpacedInt.cpp
|
||||
* Output: \verbinclude DenseBase_LinSpacedInt.out
|
||||
*
|
||||
* \sa setLinSpaced(Index,const Scalar&,const Scalar&), LinSpaced(Sequential_t,Index,const Scalar&,const Scalar&,Index), CwiseNullaryOp
|
||||
* \sa setLinSpaced(Index,const Scalar&,const Scalar&), CwiseNullaryOp
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
|
||||
DenseBase<Derived>::LinSpaced(Index size, const Scalar& low, const Scalar& high)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return DenseBase<Derived>::NullaryExpr(size, internal::linspaced_op<Scalar,PacketScalar,true>(low,high,size));
|
||||
return DenseBase<Derived>::NullaryExpr(size, internal::linspaced_op<Scalar,PacketScalar>(low,high,size));
|
||||
}
|
||||
|
||||
/**
|
||||
@ -294,7 +281,7 @@ DenseBase<Derived>::LinSpaced(const Scalar& low, const Scalar& high)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
|
||||
return DenseBase<Derived>::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op<Scalar,PacketScalar,true>(low,high,Derived::SizeAtCompileTime));
|
||||
return DenseBase<Derived>::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op<Scalar,PacketScalar>(low,high,Derived::SizeAtCompileTime));
|
||||
}
|
||||
|
||||
/** \returns true if all coefficients in this matrix are approximately equal to \a val, to within precision \a prec */
|
||||
@ -396,7 +383,7 @@ template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setLinSpaced(Index newSize, const Scalar& low, const Scalar& high)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return derived() = Derived::NullaryExpr(newSize, internal::linspaced_op<Scalar,PacketScalar,false>(low,high,newSize));
|
||||
return derived() = Derived::NullaryExpr(newSize, internal::linspaced_op<Scalar,PacketScalar>(low,high,newSize));
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -260,10 +260,10 @@ template<typename Derived> class DenseBase
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** \internal Represents a matrix with all coefficients equal to one another*/
|
||||
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,PlainObject> ConstantReturnType;
|
||||
/** \internal Represents a vector with linearly spaced coefficients that allows sequential access only. */
|
||||
typedef CwiseNullaryOp<internal::linspaced_op<Scalar,PacketScalar,false>,PlainObject> SequentialLinSpacedReturnType;
|
||||
/** \internal \deprecated Represents a vector with linearly spaced coefficients that allows sequential access only. */
|
||||
typedef CwiseNullaryOp<internal::linspaced_op<Scalar,PacketScalar>,PlainObject> SequentialLinSpacedReturnType;
|
||||
/** \internal Represents a vector with linearly spaced coefficients that allows random access. */
|
||||
typedef CwiseNullaryOp<internal::linspaced_op<Scalar,PacketScalar,true>,PlainObject> RandomAccessLinSpacedReturnType;
|
||||
typedef CwiseNullaryOp<internal::linspaced_op<Scalar,PacketScalar>,PlainObject> RandomAccessLinSpacedReturnType;
|
||||
/** \internal the return type of MatrixBase::eigenvalues() */
|
||||
typedef Matrix<typename NumTraits<typename internal::traits<Derived>::Scalar>::Real, internal::traits<Derived>::ColsAtCompileTime, 1> EigenvaluesReturnType;
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2008-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
@ -37,66 +37,40 @@ template<typename Scalar>
|
||||
struct functor_traits<scalar_identity_op<Scalar> >
|
||||
{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; };
|
||||
|
||||
template <typename Scalar, typename Packet, bool RandomAccess, bool IsInteger> struct linspaced_op_impl;
|
||||
template <typename Scalar, typename Packet, bool IsInteger> struct linspaced_op_impl;
|
||||
|
||||
// linear access for packet ops:
|
||||
// 1) initialization
|
||||
// base = [low, ..., low] + ([step, ..., step] * [-size, ..., 0])
|
||||
// 2) each step (where size is 1 for coeff access or PacketSize for packet access)
|
||||
// base += [size*step, ..., size*step]
|
||||
//
|
||||
// TODO: Perhaps it's better to initialize lazily (so not in the constructor but in packetOp)
|
||||
// in order to avoid the padd() in operator() ?
|
||||
template <typename Scalar, typename Packet>
|
||||
struct linspaced_op_impl<Scalar,Packet,/*RandomAccess*/false,/*IsInteger*/false>
|
||||
struct linspaced_op_impl<Scalar,Packet,/*IsInteger*/false>
|
||||
{
|
||||
linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) :
|
||||
m_low(low), m_step(num_steps==1 ? Scalar() : (high-low)/Scalar(num_steps-1)),
|
||||
m_packetStep(pset1<Packet>(unpacket_traits<Packet>::size*m_step)),
|
||||
m_base(padd(pset1<Packet>(low), pmul(pset1<Packet>(m_step),plset<Packet>(-unpacket_traits<Packet>::size)))) {}
|
||||
|
||||
template<typename IndexType>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType i) const
|
||||
{
|
||||
m_base = padd(m_base, pset1<Packet>(m_step));
|
||||
return m_low+Scalar(i)*m_step;
|
||||
m_low(low), m_step(num_steps==1 ? Scalar() : (high-low)/Scalar(num_steps-1)), m_interPacket(plset<Packet>(0))
|
||||
{
|
||||
// Compute the correction to be applied to ensure 'high' is returned exactly for i==num_steps-1
|
||||
m_corr = (high - (m_low+Scalar(num_steps-1)*m_step))/Scalar(num_steps<=1 ? 1 : num_steps-1);
|
||||
}
|
||||
|
||||
template<typename IndexType>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(IndexType) const { return m_base = padd(m_base,m_packetStep); }
|
||||
|
||||
const Scalar m_low;
|
||||
const Scalar m_step;
|
||||
const Packet m_packetStep;
|
||||
mutable Packet m_base;
|
||||
};
|
||||
|
||||
// random access for packet ops:
|
||||
// 1) each step
|
||||
// [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) )
|
||||
template <typename Scalar, typename Packet>
|
||||
struct linspaced_op_impl<Scalar,Packet,/*RandomAccess*/true,/*IsInteger*/false>
|
||||
{
|
||||
linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) :
|
||||
m_low(low), m_step(num_steps==1 ? Scalar() : (high-low)/Scalar(num_steps-1)),
|
||||
m_lowPacket(pset1<Packet>(m_low)), m_stepPacket(pset1<Packet>(m_step)), m_interPacket(plset<Packet>(0)) {}
|
||||
|
||||
template<typename IndexType>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType i) const { return m_low+i*m_step; }
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType i) const {
|
||||
return m_low + i*m_step + i*m_corr;
|
||||
}
|
||||
|
||||
template<typename IndexType>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(IndexType i) const
|
||||
{ return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1<Packet>(Scalar(i)),m_interPacket))); }
|
||||
{
|
||||
// Principle:
|
||||
// [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) )
|
||||
Packet pi = padd(pset1<Packet>(Scalar(i)),m_interPacket);
|
||||
return padd(padd(pset1<Packet>(m_low), pmul(pset1<Packet>(m_step), pi)),
|
||||
pmul(pset1<Packet>(m_corr), pi)); }
|
||||
|
||||
const Scalar m_low;
|
||||
Scalar m_corr;
|
||||
const Scalar m_step;
|
||||
const Packet m_lowPacket;
|
||||
const Packet m_stepPacket;
|
||||
const Packet m_interPacket;
|
||||
};
|
||||
|
||||
template <typename Scalar, typename Packet>
|
||||
struct linspaced_op_impl<Scalar,Packet,/*RandomAccess*/true,/*IsInteger*/true>
|
||||
struct linspaced_op_impl<Scalar,Packet,/*IsInteger*/true>
|
||||
{
|
||||
linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) :
|
||||
m_low(low),
|
||||
@ -124,8 +98,8 @@ struct linspaced_op_impl<Scalar,Packet,/*RandomAccess*/true,/*IsInteger*/true>
|
||||
// Forward declaration (we default to random access which does not really give
|
||||
// us a speed gain when using packet access but it allows to use the functor in
|
||||
// nested expressions).
|
||||
template <typename Scalar, typename PacketType, bool RandomAccess = true> struct linspaced_op;
|
||||
template <typename Scalar, typename PacketType, bool RandomAccess> struct functor_traits< linspaced_op<Scalar,PacketType,RandomAccess> >
|
||||
template <typename Scalar, typename PacketType> struct linspaced_op;
|
||||
template <typename Scalar, typename PacketType> struct functor_traits< linspaced_op<Scalar,PacketType> >
|
||||
{
|
||||
enum
|
||||
{
|
||||
@ -135,7 +109,7 @@ template <typename Scalar, typename PacketType, bool RandomAccess> struct functo
|
||||
IsRepeatable = true
|
||||
};
|
||||
};
|
||||
template <typename Scalar, typename PacketType, bool RandomAccess> struct linspaced_op
|
||||
template <typename Scalar, typename PacketType> struct linspaced_op
|
||||
{
|
||||
linspaced_op(const Scalar& low, const Scalar& high, Index num_steps)
|
||||
: impl((num_steps==1 ? high : low),high,num_steps)
|
||||
@ -147,12 +121,9 @@ template <typename Scalar, typename PacketType, bool RandomAccess> struct linspa
|
||||
template<typename Packet,typename IndexType>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(IndexType i) const { return impl.packetOp(i); }
|
||||
|
||||
// This proxy object handles the actual required temporaries, the different
|
||||
// implementations (random vs. sequential access) as well as the
|
||||
// correct piping to size 2/4 packet operations.
|
||||
// As long as we don't have a Bresenham-like implementation for linear-access and integer types,
|
||||
// we have to by-pass RandomAccess for integer types. See bug 698.
|
||||
const linspaced_op_impl<Scalar,PacketType,(NumTraits<Scalar>::IsInteger?true:RandomAccess),NumTraits<Scalar>::IsInteger> impl;
|
||||
// This proxy object handles the actual required temporaries and the different
|
||||
// implementations (integer vs. floating point).
|
||||
const linspaced_op_impl<Scalar,PacketType,NumTraits<Scalar>::IsInteger> impl;
|
||||
};
|
||||
|
||||
// Linear access is automatically determined from the operator() prototypes available for the given functor.
|
||||
|
@ -73,16 +73,18 @@ void testVectorType(const VectorType& base)
|
||||
VERIFY_IS_APPROX(m,n);
|
||||
VERIFY( internal::isApprox(m(m.size()-1),high) );
|
||||
VERIFY( size==1 || internal::isApprox(m(0),low) );
|
||||
|
||||
// sequential access version
|
||||
m = VectorType::LinSpaced(Sequential,size,low,high);
|
||||
VERIFY_IS_APPROX(m,n);
|
||||
VERIFY( internal::isApprox(m(m.size()-1),high) );
|
||||
VERIFY_IS_EQUAL(m(m.size()-1) , high);
|
||||
}
|
||||
|
||||
Scalar tol_factor = (high>=0) ? (1+NumTraits<Scalar>::dummy_precision()) : (1-NumTraits<Scalar>::dummy_precision());
|
||||
VERIFY( m(m.size()-1) <= high*tol_factor );
|
||||
VERIFY( size==1 || internal::isApprox(m(0),low) );
|
||||
VERIFY( m(m.size()-1) <= high );
|
||||
|
||||
|
||||
VERIFY( m(m.size()-1) >= low );
|
||||
if(size>=1)
|
||||
{
|
||||
VERIFY( internal::isApprox(m(0),low) );
|
||||
VERIFY_IS_EQUAL(m(0) , low);
|
||||
}
|
||||
|
||||
// check whether everything works with row and col major vectors
|
||||
Matrix<Scalar,Dynamic,1> row_vector(size);
|
||||
@ -187,10 +189,10 @@ void test_nullary()
|
||||
VERIFY(( internal::has_binary_operator<internal::scalar_identity_op<double> >::value ));
|
||||
VERIFY(( !internal::functor_has_linear_access<internal::scalar_identity_op<double> >::ret ));
|
||||
|
||||
VERIFY(( !internal::has_nullary_operator<internal::linspaced_op<float,float,false> >::value ));
|
||||
VERIFY(( internal::has_unary_operator<internal::linspaced_op<float,float,false> >::value ));
|
||||
VERIFY(( !internal::has_binary_operator<internal::linspaced_op<float,float,false> >::value ));
|
||||
VERIFY(( internal::functor_has_linear_access<internal::linspaced_op<float,float,false> >::ret ));
|
||||
VERIFY(( !internal::has_nullary_operator<internal::linspaced_op<float,float> >::value ));
|
||||
VERIFY(( internal::has_unary_operator<internal::linspaced_op<float,float> >::value ));
|
||||
VERIFY(( !internal::has_binary_operator<internal::linspaced_op<float,float> >::value ));
|
||||
VERIFY(( internal::functor_has_linear_access<internal::linspaced_op<float,float> >::ret ));
|
||||
|
||||
// Regression unit test for a weird MSVC bug.
|
||||
// Search "nullary_wrapper_workaround_msvc" in CoreEvaluators.h for the details.
|
||||
@ -211,10 +213,10 @@ void test_nullary()
|
||||
VERIFY(( !internal::has_binary_operator<internal::scalar_constant_op<float> >::value ));
|
||||
VERIFY(( internal::functor_has_linear_access<internal::scalar_constant_op<float> >::ret ));
|
||||
|
||||
VERIFY(( !internal::has_nullary_operator<internal::linspaced_op<int,int,false> >::value ));
|
||||
VERIFY(( internal::has_unary_operator<internal::linspaced_op<int,int,false> >::value ));
|
||||
VERIFY(( !internal::has_binary_operator<internal::linspaced_op<int,int,false> >::value ));
|
||||
VERIFY(( internal::functor_has_linear_access<internal::linspaced_op<int,int,false> >::ret ));
|
||||
VERIFY(( !internal::has_nullary_operator<internal::linspaced_op<int,int> >::value ));
|
||||
VERIFY(( internal::has_unary_operator<internal::linspaced_op<int,int> >::value ));
|
||||
VERIFY(( !internal::has_binary_operator<internal::linspaced_op<int,int> >::value ));
|
||||
VERIFY(( internal::functor_has_linear_access<internal::linspaced_op<int,int> >::ret ));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user