Added ability to swap the layout of a tensor

This commit is contained in:
Benoit Steiner 2015-01-14 10:14:46 -08:00
parent c94174b4fe
commit b00fe1590d
2 changed files with 259 additions and 0 deletions

View File

@ -0,0 +1,198 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_LAYOUT_SWAP_H
#define EIGEN_CXX11_TENSOR_TENSOR_LAYOUT_SWAP_H
namespace Eigen {
/** \class TensorLayoutSwap
* \ingroup CXX11_Tensor_Module
*
* \brief Swap the layout from col-major to row-major, or row-major
* to col-major, and invert the order of the dimensions.
*
* Beware: the dimensions are reversed by this operation. If you want to
* preserve the ordering of the dimensions, you need to combine this
* operation with a shuffle.
*
* \example:
* Tensor<float, 2, ColMajor> input(2, 4);
* Tensor<float, 2, RowMajor> output = input.swap_layout();
* eigen_assert(output.dimension(0) == 4);
* eigen_assert(output.dimension(1) == 2);
*
* array<int, 2> shuffle(1, 0);
* output = input.swap_layout().shuffle(shuffle);
* eigen_assert(output.dimension(0) == 2);
* eigen_assert(output.dimension(1) == 4);
*
*/
namespace internal {
template<typename XprType>
struct traits<TensorLayoutSwapOp<XprType> > : public traits<XprType>
{
typedef typename XprType::Scalar Scalar;
typedef traits<XprType> XprTraits;
typedef typename packet_traits<Scalar>::type Packet;
typedef typename XprTraits::StorageKind StorageKind;
typedef typename XprTraits::Index Index;
typedef typename XprType::Nested Nested;
typedef typename remove_reference<Nested>::type _Nested;
static const int NumDimensions = traits<XprType>::NumDimensions;
static const int Layout = (traits<XprType>::Layout == ColMajor) ? RowMajor : ColMajor;
};
template<typename XprType>
struct eval<TensorLayoutSwapOp<XprType>, Eigen::Dense>
{
typedef const TensorLayoutSwapOp<XprType>& type;
};
template<typename XprType>
struct nested<TensorLayoutSwapOp<XprType>, 1, typename eval<TensorLayoutSwapOp<XprType> >::type>
{
typedef TensorLayoutSwapOp<XprType> type;
};
} // end namespace internal
template<typename XprType>
class TensorLayoutSwapOp : public TensorBase<TensorLayoutSwapOp<XprType>, WriteAccessors>
{
public:
typedef typename Eigen::internal::traits<TensorLayoutSwapOp>::Scalar Scalar;
typedef typename Eigen::internal::traits<TensorLayoutSwapOp>::Packet Packet;
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
typedef typename internal::remove_const<typename XprType::PacketReturnType>::type PacketReturnType;
typedef typename Eigen::internal::nested<TensorLayoutSwapOp>::type Nested;
typedef typename Eigen::internal::traits<TensorLayoutSwapOp>::StorageKind StorageKind;
typedef typename Eigen::internal::traits<TensorLayoutSwapOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorLayoutSwapOp(const XprType& expr)
: m_xpr(expr) {}
EIGEN_DEVICE_FUNC
const typename internal::remove_all<typename XprType::Nested>::type&
expression() const { return m_xpr; }
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE TensorLayoutSwapOp& operator = (const OtherDerived& other)
{
typedef TensorAssignOp<TensorLayoutSwapOp, const OtherDerived> Assign;
Assign assign(*this, other);
internal::TensorExecutor<const Assign, DefaultDevice, false>::run(assign, DefaultDevice());
return *this;
}
protected:
typename XprType::Nested m_xpr;
};
// Eval as rvalue
template<typename ArgType, typename Device>
struct TensorEvaluator<const TensorLayoutSwapOp<ArgType>, Device>
{
typedef TensorLayoutSwapOp<ArgType> XprType;
typedef typename XprType::Index Index;
static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
typedef DSizes<Index, NumDims> Dimensions;
enum {
IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
Layout = (TensorEvaluator<ArgType, Device>::Layout == ColMajor) ? RowMajor : ColMajor,
CoordAccess = false, // to be implemented
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
: m_impl(op.expression(), device)
{
for(int i = 0; i < NumDims; ++i) {
m_dimensions[i] = m_impl.dimensions()[NumDims-1-i];
}
}
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketReturnType PacketReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
return m_impl.evalSubExprsIfNeeded(data);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
m_impl.cleanup();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
{
return m_impl.coeff(index);
}
template<int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
{
return m_impl.template packet<LoadMode>(index);
}
CoeffReturnType* data() const { return m_impl.data(); }
const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
protected:
TensorEvaluator<ArgType, Device> m_impl;
Dimensions m_dimensions;
};
// Eval as lvalue
template<typename ArgType, typename Device>
struct TensorEvaluator<TensorLayoutSwapOp<ArgType>, Device>
: public TensorEvaluator<const TensorLayoutSwapOp<ArgType>, Device>
{
typedef TensorEvaluator<const TensorLayoutSwapOp<ArgType>, Device> Base;
typedef TensorLayoutSwapOp<ArgType> XprType;
enum {
IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
Layout = (TensorEvaluator<ArgType, Device>::Layout == ColMajor) ? RowMajor : ColMajor,
CoordAccess = false, // to be implemented
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
: Base(op, device)
{ }
typedef typename XprType::Index Index;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketReturnType PacketReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
{
return this->m_impl.coeffRef(index);
}
template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void writePacket(Index index, const PacketReturnType& x)
{
this->m_impl.template writePacket<StoreMode>(index, x);
}
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_LAYOUT_SWAP_H

View File

@ -0,0 +1,61 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/CXX11/Tensor>
using Eigen::Tensor;
static void test_simple_swap()
{
Tensor<float, 3, ColMajor> tensor(2,3,7);
tensor.setRandom();
Tensor<float, 3, RowMajor> tensor2 = tensor.swap_layout();
VERIFY_IS_EQUAL(tensor.dimension(0), tensor2.dimension(2));
VERIFY_IS_EQUAL(tensor.dimension(1), tensor2.dimension(1));
VERIFY_IS_EQUAL(tensor.dimension(2), tensor2.dimension(0));
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
VERIFY_IS_EQUAL(tensor(i,j,k), tensor2(k,j,i));
}
}
}
}
static void test_swap_as_lvalue()
{
Tensor<float, 3, ColMajor> tensor(2,3,7);
tensor.setRandom();
Tensor<float, 3, RowMajor> tensor2(7,3,2);
tensor2.swap_layout() = tensor;
VERIFY_IS_EQUAL(tensor.dimension(0), tensor2.dimension(2));
VERIFY_IS_EQUAL(tensor.dimension(1), tensor2.dimension(1));
VERIFY_IS_EQUAL(tensor.dimension(2), tensor2.dimension(0));
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
VERIFY_IS_EQUAL(tensor(i,j,k), tensor2(k,j,i));
}
}
}
}
void test_cxx11_tensor_layout_swap()
{
CALL_SUBTEST(test_simple_swap());
CALL_SUBTEST(test_swap_as_lvalue());
}