Added test for cwiseMin, cwiseMax and operator%.

This commit is contained in:
Luke Iwanski 2016-11-19 13:37:27 +00:00
parent 1bdf1b9ce0
commit af67335e0e

View File

@ -123,8 +123,8 @@ template <typename T> T inverse(T x) { return 1 / x; }
}
#define TEST_UNARY_BUILTINS(SCALAR) \
TEST_UNARY_BUILTINS_OPERATOR(SCALAR, += ) \
TEST_UNARY_BUILTINS_OPERATOR(SCALAR, = ) \
TEST_UNARY_BUILTINS_OPERATOR(SCALAR, +=) \
TEST_UNARY_BUILTINS_OPERATOR(SCALAR, =) \
TEST_IS_THAT_RETURNS_BOOL(SCALAR, isnan) \
TEST_IS_THAT_RETURNS_BOOL(SCALAR, isfinite) \
TEST_IS_THAT_RETURNS_BOOL(SCALAR, isinf)
@ -140,9 +140,133 @@ static void test_builtin_unary_sycl(const Eigen::SyclDevice &sycl_device) {
TEST_UNARY_BUILTINS(double)
}
namespace std {
template <typename T> T cwiseMax(T x, T y) { return std::max(x, y); }
template <typename T> T cwiseMin(T x, T y) { return std::min(x, y); }
}
#define TEST_BINARY_BUILTINS_FUNC(SCALAR, FUNC) \
{ \
/* out = in_1.FUNC(in_2) */ \
Tensor<SCALAR, 3> in_1(tensorRange); \
Tensor<SCALAR, 3> in_2(tensorRange); \
Tensor<SCALAR, 3> out(tensorRange); \
in_1 = in_1.random() + static_cast<SCALAR>(0.01); \
in_2 = in_2.random() + static_cast<SCALAR>(0.01); \
out = out.random() + static_cast<SCALAR>(0.01); \
Tensor<SCALAR, 3> reference(out); \
SCALAR *gpu_data_1 = static_cast<SCALAR *>( \
sycl_device.allocate(in_1.size() * sizeof(SCALAR))); \
SCALAR *gpu_data_2 = static_cast<SCALAR *>( \
sycl_device.allocate(in_2.size() * sizeof(SCALAR))); \
SCALAR *gpu_data_out = static_cast<SCALAR *>( \
sycl_device.allocate(out.size() * sizeof(SCALAR))); \
TensorMap<Tensor<SCALAR, 3>> gpu_1(gpu_data_1, tensorRange); \
TensorMap<Tensor<SCALAR, 3>> gpu_2(gpu_data_2, tensorRange); \
TensorMap<Tensor<SCALAR, 3>> gpu_out(gpu_data_out, tensorRange); \
sycl_device.memcpyHostToDevice(gpu_data_1, in_1.data(), \
(in_1.size()) * sizeof(SCALAR)); \
sycl_device.memcpyHostToDevice(gpu_data_2, in_2.data(), \
(in_2.size()) * sizeof(SCALAR)); \
sycl_device.memcpyHostToDevice(gpu_data_out, out.data(), \
(out.size()) * sizeof(SCALAR)); \
gpu_out.device(sycl_device) = gpu_1.FUNC(gpu_2); \
sycl_device.memcpyDeviceToHost(out.data(), gpu_data_out, \
(out.size()) * sizeof(SCALAR)); \
for (int i = 0; i < out.size(); ++i) { \
SCALAR ver = reference(i); \
ver = std::FUNC(in_1(i), in_2(i)); \
VERIFY_IS_APPROX(out(i), ver); \
} \
sycl_device.deallocate(gpu_data_1); \
sycl_device.deallocate(gpu_data_2); \
sycl_device.deallocate(gpu_data_out); \
}
#define TEST_BINARY_BUILTINS_OPERATORS(SCALAR, OPERATOR) \
{ \
/* out = in_1 OPERATOR in_2 */ \
Tensor<SCALAR, 3> in_1(tensorRange); \
Tensor<SCALAR, 3> in_2(tensorRange); \
Tensor<SCALAR, 3> out(tensorRange); \
in_1 = in_1.random() + static_cast<SCALAR>(0.01); \
in_2 = in_2.random() + static_cast<SCALAR>(0.01); \
out = out.random() + static_cast<SCALAR>(0.01); \
Tensor<SCALAR, 3> reference(out); \
SCALAR *gpu_data_1 = static_cast<SCALAR *>( \
sycl_device.allocate(in_1.size() * sizeof(SCALAR))); \
SCALAR *gpu_data_2 = static_cast<SCALAR *>( \
sycl_device.allocate(in_2.size() * sizeof(SCALAR))); \
SCALAR *gpu_data_out = static_cast<SCALAR *>( \
sycl_device.allocate(out.size() * sizeof(SCALAR))); \
TensorMap<Tensor<SCALAR, 3>> gpu_1(gpu_data_1, tensorRange); \
TensorMap<Tensor<SCALAR, 3>> gpu_2(gpu_data_2, tensorRange); \
TensorMap<Tensor<SCALAR, 3>> gpu_out(gpu_data_out, tensorRange); \
sycl_device.memcpyHostToDevice(gpu_data_1, in_1.data(), \
(in_1.size()) * sizeof(SCALAR)); \
sycl_device.memcpyHostToDevice(gpu_data_2, in_2.data(), \
(in_2.size()) * sizeof(SCALAR)); \
sycl_device.memcpyHostToDevice(gpu_data_out, out.data(), \
(out.size()) * sizeof(SCALAR)); \
gpu_out.device(sycl_device) = gpu_1 OPERATOR gpu_2; \
sycl_device.memcpyDeviceToHost(out.data(), gpu_data_out, \
(out.size()) * sizeof(SCALAR)); \
for (int i = 0; i < out.size(); ++i) { \
VERIFY_IS_APPROX(out(i), in_1(i) OPERATOR in_2(i)); \
} \
sycl_device.deallocate(gpu_data_1); \
sycl_device.deallocate(gpu_data_2); \
sycl_device.deallocate(gpu_data_out); \
}
#define TEST_BINARY_BUILTINS_OPERATORS_THAT_TAKES_SCALAR(SCALAR, OPERATOR) \
{ \
/* out = in_1 OPERATOR 2 */ \
Tensor<SCALAR, 3> in_1(tensorRange); \
Tensor<SCALAR, 3> out(tensorRange); \
in_1 = in_1.random() + static_cast<SCALAR>(0.01); \
Tensor<SCALAR, 3> reference(out); \
SCALAR *gpu_data_1 = static_cast<SCALAR *>( \
sycl_device.allocate(in_1.size() * sizeof(SCALAR))); \
SCALAR *gpu_data_out = static_cast<SCALAR *>( \
sycl_device.allocate(out.size() * sizeof(SCALAR))); \
TensorMap<Tensor<SCALAR, 3>> gpu_1(gpu_data_1, tensorRange); \
TensorMap<Tensor<SCALAR, 3>> gpu_out(gpu_data_out, tensorRange); \
sycl_device.memcpyHostToDevice(gpu_data_1, in_1.data(), \
(in_1.size()) * sizeof(SCALAR)); \
sycl_device.memcpyHostToDevice(gpu_data_out, out.data(), \
(out.size()) * sizeof(SCALAR)); \
gpu_out.device(sycl_device) = gpu_1 OPERATOR 2; \
sycl_device.memcpyDeviceToHost(out.data(), gpu_data_out, \
(out.size()) * sizeof(SCALAR)); \
for (int i = 0; i < out.size(); ++i) { \
VERIFY_IS_APPROX(out(i), in_1(i) OPERATOR 2); \
} \
sycl_device.deallocate(gpu_data_1); \
sycl_device.deallocate(gpu_data_out); \
}
#define TEST_BINARY_BUILTINS(SCALAR) \
TEST_BINARY_BUILTINS_FUNC(SCALAR, cwiseMax) \
TEST_BINARY_BUILTINS_FUNC(SCALAR, cwiseMin) \
TEST_BINARY_BUILTINS_OPERATORS(SCALAR, +) \
TEST_BINARY_BUILTINS_OPERATORS(SCALAR, -) \
TEST_BINARY_BUILTINS_OPERATORS(SCALAR, *) \
TEST_BINARY_BUILTINS_OPERATORS(SCALAR, /)
static void test_builtin_binary_sycl(const Eigen::SyclDevice &sycl_device) {
int sizeDim1 = 10;
int sizeDim2 = 10;
int sizeDim3 = 10;
array<int, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}};
TEST_BINARY_BUILTINS(float)
TEST_BINARY_BUILTINS_OPERATORS_THAT_TAKES_SCALAR(int, %)
}
void test_cxx11_tensor_builtins_sycl() {
cl::sycl::gpu_selector s;
QueueInterface queueInterface(s);
Eigen::SyclDevice sycl_device(&queueInterface);
CALL_SUBTEST(test_builtin_unary_sycl(sycl_device));
CALL_SUBTEST(test_builtin_binary_sycl(sycl_device));
}