Add matrix-free solver example

This commit is contained in:
Gael Guennebaud 2015-12-07 12:33:38 +01:00
parent b37036afce
commit ad3d68400e
8 changed files with 161 additions and 1 deletions

View File

@ -150,6 +150,8 @@ struct traits<BiCGSTAB<_MatrixType,_Preconditioner> >
* By default the iterations start with x=0 as an initial guess of the solution.
* One can control the start using the solveWithGuess() method.
*
* BiCGSTAB can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
*
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
*/
template< typename _MatrixType, typename _Preconditioner>

View File

@ -125,6 +125,8 @@ namespace Eigen {
\ingroup Sparse_chapter */
/** \addtogroup TopicSparseSystems
\ingroup Sparse_chapter */
/** \addtogroup MatrixfreeSolverExample
\ingroup Sparse_chapter */
/** \addtogroup Sparse_Reference
\ingroup Sparse_chapter */

View File

@ -0,0 +1,20 @@
namespace Eigen {
/**
\eigenManualPage MatrixfreeSolverExample Matrix-free solvers
Iterative solvers such as ConjugateGradient and BiCGSTAB can be used in a matrix free context. To this end, user must provide a wrapper class inheriting EigenBase<> and implementing the following methods:
- Index rows() and Index cols(): returns number of rows and columns respectively
- operator* with and %Eigen dense column vector (its actual implementation goes in a specialization of the internal::generic_product_impl class)
Eigen::internal::traits<> must also be specialized for the wrapper type.
Here is a complete example wrapping a Eigen::SparseMatrix:
\include matrixfree_cg.cpp
Output: \verbinclude matrixfree_cg.out
*/
}

View File

@ -133,9 +133,11 @@ x2 = solver.solve(b2);
\endcode
The compute() method is equivalent to calling both analyzePattern() and factorize().
Finally, each solver provides some specific features, such as determinant, access to the factors, controls of the iterations, and so on.
Each solver provides some specific features, such as determinant, access to the factors, controls of the iterations, and so on.
More details are available in the documentations of the respective classes.
Finally, most of the iterative solvers, can also be used in a \b matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
\section TheSparseCompute The Compute Step
In the compute() function, the matrix is generally factorized: LLT for self-adjoint matrices, LDLT for general hermitian matrices, LU for non hermitian matrices and QR for rectangular matrices. These are the results of using direct solvers. For this class of solvers precisely, the compute step is further subdivided into analyzePattern() and factorize().

View File

@ -0,0 +1,128 @@
#include <iostream>
#include <Eigen/Core>
#include <Eigen/Dense>
#include <Eigen/IterativeLinearSolvers>
#include <unsupported/Eigen/IterativeSolvers>
class MatrixReplacement;
using Eigen::SparseMatrix;
namespace Eigen {
namespace internal {
// MatrixReplacement looks-like a SparseMatrix, so let's inherits its traits:
template<>
struct traits<MatrixReplacement> : public Eigen::internal::traits<Eigen::SparseMatrix<double> >
{};
}
}
// Example of a matrix-free wrapper from a user type to Eigen's compatible type
// For the sake of simplicity, this example simply wrap a Eigen::SparseMatrix.
class MatrixReplacement : public Eigen::EigenBase<MatrixReplacement> {
public:
// Required typedefs, constants, and method:
typedef double Scalar;
typedef double RealScalar;
typedef int StorageIndex;
enum {
ColsAtCompileTime = Eigen::Dynamic,
MaxColsAtCompileTime = Eigen::Dynamic,
IsRowMajor = false
};
Index rows() const { return mp_mat->rows(); }
Index cols() const { return mp_mat->cols(); }
template<typename Rhs>
Eigen::Product<MatrixReplacement,Rhs,Eigen::AliasFreeProduct> operator*(const Eigen::MatrixBase<Rhs>& x) const {
return Eigen::Product<MatrixReplacement,Rhs,Eigen::AliasFreeProduct>(*this, x.derived());
}
// Custom API:
MatrixReplacement() : mp_mat(0) {}
void attachMyMatrix(const SparseMatrix<double> &mat) {
mp_mat = &mat;
}
const SparseMatrix<double> my_matrix() const { return *mp_mat; }
private:
const SparseMatrix<double> *mp_mat;
};
// Implementation of MatrixReplacement * Eigen::DenseVector though a specialization of internal::generic_product_impl:
namespace Eigen {
namespace internal {
template<typename Rhs>
struct generic_product_impl<MatrixReplacement, Rhs, SparseShape, DenseShape, GemvProduct> // GEMV stands for matrix-vector
: generic_product_impl_base<MatrixReplacement,Rhs,generic_product_impl<MatrixReplacement,Rhs> >
{
typedef typename Product<MatrixReplacement,Rhs>::Scalar Scalar;
template<typename Dest>
static void scaleAndAddTo(Dest& dst, const MatrixReplacement& lhs, const Rhs& rhs, const Scalar& alpha)
{
// This method should implement "dst += alpha * lhs * rhs" inplace,
// however, for iterative solvers, alpha is always equal to 1, so let's not bother about it.
assert(alpha==Scalar(1) && "scaling is not implemented");
// Here we could simply call dst.noalias() += lhs.my_matrix() * rhs,
// but let's do something fancier (and less efficient):
for(Index i=0; i<lhs.cols(); ++i)
dst += rhs(i) * lhs.my_matrix().col(i);
}
};
}
}
int main()
{
int n = 10;
Eigen::SparseMatrix<double> S = Eigen::MatrixXd::Random(n,n).sparseView(0.5,1);
S = S.transpose()*S;
MatrixReplacement A;
A.attachMyMatrix(S);
Eigen::VectorXd b(n), x;
b.setRandom();
// Solve Ax = b using various iterative solver with matrix-free version:
{
Eigen::ConjugateGradient<MatrixReplacement, Eigen::Lower|Eigen::Upper, Eigen::IdentityPreconditioner> cg;
cg.compute(A);
x = cg.solve(b);
std::cout << "CG: #iterations: " << cg.iterations() << ", estimated error: " << cg.error() << std::endl;
}
{
Eigen::BiCGSTAB<MatrixReplacement, Eigen::IdentityPreconditioner> bicg;
bicg.compute(A);
x = bicg.solve(b);
std::cout << "BiCGSTAB: #iterations: " << bicg.iterations() << ", estimated error: " << bicg.error() << std::endl;
}
{
Eigen::GMRES<MatrixReplacement, Eigen::IdentityPreconditioner> gmres;
gmres.compute(A);
x = gmres.solve(b);
std::cout << "GMRES: #iterations: " << gmres.iterations() << ", estimated error: " << gmres.error() << std::endl;
}
{
Eigen::DGMRES<MatrixReplacement, Eigen::IdentityPreconditioner> gmres;
gmres.compute(A);
x = gmres.solve(b);
std::cout << "DGMRES: #iterations: " << gmres.iterations() << ", estimated error: " << gmres.error() << std::endl;
}
{
Eigen::MINRES<MatrixReplacement, Eigen::Lower|Eigen::Upper, Eigen::IdentityPreconditioner> minres;
minres.compute(A);
x = minres.solve(b);
std::cout << "MINRES: #iterations: " << minres.iterations() << ", estimated error: " << minres.error() << std::endl;
}
}

View File

@ -83,6 +83,8 @@ void sortWithPermutation (VectorType& vec, IndexType& perm, typename IndexType::
* x = solver.solve(b);
* \endcode
*
* DGMRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
*
* References :
* [1] D. NUENTSA WAKAM and F. PACULL, Memory Efficient Hybrid
* Algebraic Solvers for Linear Systems Arising from Compressible

View File

@ -251,6 +251,8 @@ struct traits<GMRES<_MatrixType,_Preconditioner> >
* By default the iterations start with x=0 as an initial guess of the solution.
* One can control the start using the solveWithGuess() method.
*
* GMRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
*
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
*/
template< typename _MatrixType, typename _Preconditioner>

View File

@ -191,6 +191,8 @@ namespace Eigen {
* By default the iterations start with x=0 as an initial guess of the solution.
* One can control the start using the solveWithGuess() method.
*
* MINRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
*
* \sa class ConjugateGradient, BiCGSTAB, SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
*/
template< typename _MatrixType, int _UpLo, typename _Preconditioner>