Added support for simple coefficient wise tensor expression using half floats on CUDA devices

This commit is contained in:
Benoit Steiner 2016-02-19 08:19:12 +00:00
parent 0606a0a39b
commit ac5d706a94
3 changed files with 264 additions and 0 deletions

View File

@ -333,6 +333,7 @@ using std::ptrdiff_t;
#if defined EIGEN_VECTORIZE_CUDA
#include "src/Core/arch/CUDA/PacketMath.h"
#include "src/Core/arch/CUDA/PacketMathHalf.h"
#include "src/Core/arch/CUDA/MathFunctions.h"
#include "src/Core/arch/CUDA/TypeCasting.h"
#endif

View File

@ -0,0 +1,220 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PACKET_MATH_HALF_CUDA_H
#define EIGEN_PACKET_MATH_HALF_CUDA_H
namespace Eigen {
namespace internal {
#if defined(EIGEN_HAS_CUDA_FP16)
// Make sure this is only available when targeting a GPU: we don't want to
// introduce conflicts between these packet_traits definitions and the ones
// we'll use on the host side (SSE, AVX, ...)
#if defined(__CUDACC__) && defined(EIGEN_USE_GPU)
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
__device__ half operator + (const half& a, const half& b) {
return __hadd(a, b);
}
__device__ half operator * (const half& a, const half& b) {
return __hmul(a, b);
}
__device__ half operator - (const half& a, const half& b) {
return __hsub(a, b);
}
__device__ half operator / (const half& a, const half& b) {
assert(false && "tbd");
return half();
}
__device__ half operator - (const half& a) {
return __hneg(a);
}
template<> struct is_arithmetic<half2> { enum { value = true }; };
template<> struct packet_traits<half> : default_packet_traits
{
typedef half2 type;
typedef half2 half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size=2,
HasHalfPacket = 0,
HasDiv = 1,
HasLog = 1,
HasExp = 1,
HasSqrt = 1,
HasRsqrt = 1,
HasLGamma = 1,
HasDiGamma = 1,
HasErf = 1,
HasErfc = 1,
HasBlend = 0,
};
};
template<> struct unpacket_traits<half2> { typedef half type; enum {size=2, alignment=Aligned16}; typedef half2 half; };
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pset1<half2>(const half& from) {
return __half2half2(from);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 plset<half2>(const half& a) {
return __halves2half2(a, __hadd(a, __float2half(1)));
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 padd<half2>(const half2& a, const half2& b) {
return __hadd2(a, b);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 psub<half2>(const half2& a, const half2& b) {
return __hsub2(a, b);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pnegate(const half2& a) {
return __hneg2(a);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pconj(const half2& a) { return a; }
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pmul<half2>(const half2& a, const half2& b) {
return __hmul2(a, b);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pmadd<half2>(const half2& a, const half2& b, const half2& c) {
return __hfma2(a, b, c);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pdiv<half2>(const half2& a, const half2& b) {
float a1 = __low2float(a);
float a2 = __high2float(a);
float b1 = __low2float(b);
float b2 = __high2float(b);
float r1 = a1 / b1;
float r2 = a2 / b2;
return __floats2half2_rn(r1, r2);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pmin<half2>(const half2& a, const half2& b) {
float a1 = __low2float(a);
float a2 = __high2float(a);
float b1 = __low2float(b);
float b2 = __high2float(b);
half r1 = a1 < b1 ? __low2half(a) : __low2half(b);
half r2 = a2 < b2 ? __high2half(a) : __high2half(b);
return __halves2half2(r1, r2);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pmax<half2>(const half2& a, const half2& b) {
float a1 = __low2float(a);
float a2 = __high2float(a);
float b1 = __low2float(b);
float b2 = __high2float(b);
half r1 = a1 > b1 ? __low2half(a) : __low2half(b);
half r2 = a2 > b2 ? __high2half(a) : __high2half(b);
return __halves2half2(r1, r2);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pload<half2>(const half* from) {
return *reinterpret_cast<const half2*>(from);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 ploadu<half2>(const half* from) {
return __halves2half2(from[0], from[1]);
}
template<> EIGEN_STRONG_INLINE half2 ploaddup<half2>(const half* from) {
return __halves2half2(from[0], from[0]);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pstore<half>(half* to, const half2& from) {
*reinterpret_cast<half2*>(to) = from;
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pstoreu<half>(half* to, const half2& from) {
to[0] = __low2half(from);
to[1] = __high2half(from);
}
template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE half2 ploadt_ro<half2, Aligned>(const half* from) {
return __ldg((const half2*)from);
}
template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE half2 ploadt_ro<half2, Unaligned>(const half* from) {
return __halves2half2(__ldg(from+0), __ldg(from+1));
}
template<> EIGEN_DEVICE_FUNC inline half2 pgather<half, half2>(const half* from, Index stride) {
return __halves2half2(from[0*stride], from[1*stride]);
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<half, half2>(half* to, const half2& from, Index stride) {
to[stride*0] = __low2half(from);
to[stride*1] = __high2half(from);
}
template<> EIGEN_DEVICE_FUNC inline half pfirst<half2>(const half2& a) {
return __low2half(a);
}
template<> EIGEN_DEVICE_FUNC inline half predux<half2>(const half2& a) {
return __hadd(__low2half(a), __high2half(a));
}
template<> EIGEN_DEVICE_FUNC inline half predux_max<half2>(const half2& a) {
half first = __low2half(a);
half second = __high2half(a);
return __hgt(first, second) ? first : second;
}
template<> EIGEN_DEVICE_FUNC inline half predux_min<half2>(const half2& a) {
half first = __low2half(a);
half second = __high2half(a);
return __hlt(first, second) ? first : second;
}
template<> EIGEN_DEVICE_FUNC inline half predux_mul<half2>(const half2& a) {
return __hmul(__low2half(a), __high2half(a));
}
template<> EIGEN_DEVICE_FUNC inline half2 pabs<half2>(const half2& a) {
assert(false && "tbd");
return half2();
}
EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<half2,2>& kernel) {
assert(false && "tbd");
// half tmp = kernel.packet[0].y;
// kernel.packet[0].y = kernel.packet[1].x;
// kernel.packet[1].x = tmp;
}
#endif
#endif
#endif
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_PACKET_MATH_HALF_CUDA_H

View File

@ -20,6 +20,7 @@
using Eigen::Tensor;
#ifdef EIGEN_HAS_CUDA_FP16
void test_cuda_conversion() {
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
@ -53,11 +54,53 @@ void test_cuda_conversion() {
gpu_device.deallocate(d_half);
gpu_device.deallocate(d_conv);
}
void test_cuda_elementwise() {
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
int num_elem = 101;
float* d_float1 = (float*)gpu_device.allocate(num_elem * sizeof(float));
float* d_float2 = (float*)gpu_device.allocate(num_elem * sizeof(float));
float* d_res_half = (float*)gpu_device.allocate(num_elem * sizeof(float));
float* d_res_float = (float*)gpu_device.allocate(num_elem * sizeof(float));
Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_float1(
d_float1, num_elem);
Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_float2(
d_float2, num_elem);
Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_res_half(
d_res_half, num_elem);
Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_res_float(
d_res_float, num_elem);
gpu_float1.device(gpu_device) = gpu_float1.random();
gpu_float2.device(gpu_device) = gpu_float2.random();
gpu_res_float.device(gpu_device) = (gpu_float1 + gpu_float2) * gpu_float1;
gpu_res_half.device(gpu_device) = ((gpu_float1.cast<half>() + gpu_float2.cast<half>()) * gpu_float1.cast<half>()).cast<float>();
Tensor<float, 1> half_prec(num_elem);
Tensor<float, 1> full_prec(num_elem);
gpu_device.memcpyDeviceToHost(half_prec.data(), d_res_half, num_elem*sizeof(float));
gpu_device.memcpyDeviceToHost(full_prec.data(), d_res_float, num_elem*sizeof(float));
for (int i = 0; i < num_elem; ++i) {
VERIFY_IS_APPROX(full_prec(i), half_prec(i));
}
gpu_device.deallocate(d_float1);
gpu_device.deallocate(d_float2);
gpu_device.deallocate(d_res_half);
gpu_device.deallocate(d_res_float);
}
#endif
void test_cxx11_tensor_of_float16_cuda()
{
#ifdef EIGEN_HAS_CUDA_FP16
CALL_SUBTEST_1(test_cuda_conversion());
CALL_SUBTEST_1(test_cuda_element_wise());
#endif
}