mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
Doc: difference between array and matrix cosine etc (bug #830)
This commit is contained in:
parent
25bceefb4e
commit
abb33258ce
@ -29,6 +29,9 @@ abs2() const
|
||||
}
|
||||
|
||||
/** \returns an expression of the coefficient-wise exponential of *this.
|
||||
*
|
||||
* This function computes the coefficient-wise exponential. The function MatrixBase::exp() in the
|
||||
* unsupported module MatrixFunctions computes the matrix exponential.
|
||||
*
|
||||
* Example: \include Cwise_exp.cpp
|
||||
* Output: \verbinclude Cwise_exp.out
|
||||
@ -43,6 +46,9 @@ exp() const
|
||||
}
|
||||
|
||||
/** \returns an expression of the coefficient-wise logarithm of *this.
|
||||
*
|
||||
* This function computes the coefficient-wise logarithm. The function MatrixBase::log() in the
|
||||
* unsupported module MatrixFunctions computes the matrix logarithm.
|
||||
*
|
||||
* Example: \include Cwise_log.cpp
|
||||
* Output: \verbinclude Cwise_log.out
|
||||
@ -57,6 +63,9 @@ log() const
|
||||
}
|
||||
|
||||
/** \returns an expression of the coefficient-wise square root of *this.
|
||||
*
|
||||
* This function computes the coefficient-wise square root. The function MatrixBase::sqrt() in the
|
||||
* unsupported module MatrixFunctions computes the matrix square root.
|
||||
*
|
||||
* Example: \include Cwise_sqrt.cpp
|
||||
* Output: \verbinclude Cwise_sqrt.out
|
||||
@ -71,6 +80,9 @@ sqrt() const
|
||||
}
|
||||
|
||||
/** \returns an expression of the coefficient-wise cosine of *this.
|
||||
*
|
||||
* This function computes the coefficient-wise cosine. The function MatrixBase::cos() in the
|
||||
* unsupported module MatrixFunctions computes the matrix cosine.
|
||||
*
|
||||
* Example: \include Cwise_cos.cpp
|
||||
* Output: \verbinclude Cwise_cos.out
|
||||
@ -86,6 +98,9 @@ cos() const
|
||||
|
||||
|
||||
/** \returns an expression of the coefficient-wise sine of *this.
|
||||
*
|
||||
* This function computes the coefficient-wise sine. The function MatrixBase::sin() in the
|
||||
* unsupported module MatrixFunctions computes the matrix sine.
|
||||
*
|
||||
* Example: \include Cwise_sin.cpp
|
||||
* Output: \verbinclude Cwise_sin.out
|
||||
@ -155,6 +170,9 @@ atan() const
|
||||
}
|
||||
|
||||
/** \returns an expression of the coefficient-wise power of *this to the given exponent.
|
||||
*
|
||||
* This function computes the coefficient-wise power. The function MatrixBase::pow() in the
|
||||
* unsupported module MatrixFunctions computes the matrix power.
|
||||
*
|
||||
* Example: \include Cwise_pow.cpp
|
||||
* Output: \verbinclude Cwise_pow.out
|
||||
|
@ -82,7 +82,9 @@ const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const
|
||||
\param[in] M a square matrix.
|
||||
\returns expression representing \f$ \cos(M) \f$.
|
||||
|
||||
This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::cos().
|
||||
This function computes the matrix cosine. Use ArrayBase::cos() for computing the entry-wise cosine.
|
||||
|
||||
The implementation calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::cos().
|
||||
|
||||
\sa \ref matrixbase_sin "sin()" for an example.
|
||||
|
||||
@ -123,6 +125,9 @@ differential equations: the solution of \f$ y' = My \f$ with the
|
||||
initial condition \f$ y(0) = y_0 \f$ is given by
|
||||
\f$ y(t) = \exp(M) y_0 \f$.
|
||||
|
||||
The matrix exponential is different from applying the exp function to all the entries in the matrix.
|
||||
Use ArrayBase::exp() if you want to do the latter.
|
||||
|
||||
The cost of the computation is approximately \f$ 20 n^3 \f$ for
|
||||
matrices of size \f$ n \f$. The number 20 depends weakly on the
|
||||
norm of the matrix.
|
||||
@ -177,6 +182,9 @@ the scalar logarithm, the equation \f$ \exp(X) = M \f$ may have
|
||||
multiple solutions; this function returns a matrix whose eigenvalues
|
||||
have imaginary part in the interval \f$ (-\pi,\pi] \f$.
|
||||
|
||||
The matrix logarithm is different from applying the log function to all the entries in the matrix.
|
||||
Use ArrayBase::log() if you want to do the latter.
|
||||
|
||||
In the real case, the matrix \f$ M \f$ should be invertible and
|
||||
it should have no eigenvalues which are real and negative (pairs of
|
||||
complex conjugate eigenvalues are allowed). In the complex case, it
|
||||
@ -232,7 +240,8 @@ const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(RealScalar p) con
|
||||
|
||||
The matrix power \f$ M^p \f$ is defined as \f$ \exp(p \log(M)) \f$,
|
||||
where exp denotes the matrix exponential, and log denotes the matrix
|
||||
logarithm.
|
||||
logarithm. This is different from raising all the entries in the matrix
|
||||
to the p-th power. Use ArrayBase::pow() if you want to do the latter.
|
||||
|
||||
If \p p is complex, the scalar type of \p M should be the type of \p
|
||||
p . \f$ M^p \f$ simply evaluates into \f$ \exp(p \log(M)) \f$.
|
||||
@ -391,7 +400,9 @@ const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const
|
||||
\param[in] M a square matrix.
|
||||
\returns expression representing \f$ \sin(M) \f$.
|
||||
|
||||
This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::sin().
|
||||
This function computes the matrix sine. Use ArrayBase::sin() for computing the entry-wise sine.
|
||||
|
||||
The implementation calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::sin().
|
||||
|
||||
Example: \include MatrixSine.cpp
|
||||
Output: \verbinclude MatrixSine.out
|
||||
@ -428,7 +439,9 @@ const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const
|
||||
|
||||
The matrix square root of \f$ M \f$ is the matrix \f$ M^{1/2} \f$
|
||||
whose square is the original matrix; so if \f$ S = M^{1/2} \f$ then
|
||||
\f$ S^2 = M \f$.
|
||||
\f$ S^2 = M \f$. This is different from taking the square root of all
|
||||
the entries in the matrix; use ArrayBase::sqrt() if you want to do the
|
||||
latter.
|
||||
|
||||
In the <b>real case</b>, the matrix \f$ M \f$ should be invertible and
|
||||
it should have no eigenvalues which are real and negative (pairs of
|
||||
|
Loading…
Reference in New Issue
Block a user