Adaptions from .lazy() towards .noalias().

Added missing casts.
This commit is contained in:
Hauke Heibel 2009-08-31 17:29:37 +02:00
parent bc7aec0ef5
commit ab6eb6a1a4
8 changed files with 54 additions and 52 deletions

View File

@ -218,8 +218,8 @@ LDLT<MatrixType>& LDLT<MatrixType>::compute(const MatrixType& a)
int endSize = size - j - 1;
if (endSize > 0) {
_temporary.end(endSize) = ( m_matrix.block(j+1,0, endSize, j)
* m_matrix.col(j).start(j).conjugate() ).lazy();
_temporary.end(endSize).noalias() = m_matrix.block(j+1,0, endSize, j)
* m_matrix.col(j).start(j).conjugate();
m_matrix.row(j).end(endSize) = m_matrix.row(j).end(endSize).conjugate()
- _temporary.end(endSize).transpose();

View File

@ -141,7 +141,7 @@ template<> struct ei_llt_inplace<LowerTriangular>
if (x<=RealScalar(0))
return false;
mat.coeffRef(k,k) = x = ei_sqrt(x);
if (k>0 && rs>0) A21 -= (A20 * A10.adjoint()).lazy();
if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint();
if (rs>0) A21 *= RealScalar(1)/x;
}
return true;

View File

@ -244,11 +244,11 @@ void EigenSolver<MatrixType>::orthes(MatrixType& matH, RealVectorType& ort)
// Apply Householder similarity transformation
// H = (I-u*u'/h)*H*(I-u*u')/h)
int bSize = high-m+1;
matH.block(m, m, bSize, n-m) -= ((ort.segment(m, bSize)/h)
* (ort.segment(m, bSize).transpose() * matH.block(m, m, bSize, n-m))).lazy();
matH.block(m, m, bSize, n-m).noalias() -= ((ort.segment(m, bSize)/h)
* (ort.segment(m, bSize).transpose() * matH.block(m, m, bSize, n-m)));
matH.block(0, m, high+1, bSize) -= ((matH.block(0, m, high+1, bSize) * ort.segment(m, bSize))
* (ort.segment(m, bSize)/h).transpose()).lazy();
matH.block(0, m, high+1, bSize).noalias() -= ((matH.block(0, m, high+1, bSize) * ort.segment(m, bSize))
* (ort.segment(m, bSize)/h).transpose());
ort.coeffRef(m) = scale*ort.coeff(m);
matH.coeffRef(m,m-1) = scale*g;
@ -265,8 +265,8 @@ void EigenSolver<MatrixType>::orthes(MatrixType& matH, RealVectorType& ort)
ort.segment(m+1, high-m) = matH.col(m-1).segment(m+1, high-m);
int bSize = high-m+1;
m_eivec.block(m, m, bSize, bSize) += ( (ort.segment(m, bSize) / (matH.coeff(m,m-1) * ort.coeff(m)))
* (ort.segment(m, bSize).transpose() * m_eivec.block(m, m, bSize, bSize)) ).lazy();
m_eivec.block(m, m, bSize, bSize).noalias() += ( (ort.segment(m, bSize) / (matH.coeff(m,m-1) * ort.coeff(m)))
* (ort.segment(m, bSize).transpose() * m_eivec.block(m, m, bSize, bSize)) );
}
}
}

View File

@ -44,21 +44,21 @@ template<typename MatrixType> void bandmatrix(const MatrixType& _m)
dm1.diagonal().setConstant(123);
for (int i=1; i<=m.supers();++i)
{
m.diagonal(i).setConstant(i);
dm1.diagonal(i).setConstant(i);
m.diagonal(i).setConstant(static_cast<RealScalar>(i));
dm1.diagonal(i).setConstant(static_cast<RealScalar>(i));
}
for (int i=1; i<=m.subs();++i)
{
m.diagonal(-i).setConstant(-i);
dm1.diagonal(-i).setConstant(-i);
m.diagonal(-i).setConstant(-static_cast<RealScalar>(i));
dm1.diagonal(-i).setConstant(-static_cast<RealScalar>(i));
}
//std::cerr << m.m_data << "\n\n" << m.toDense() << "\n\n" << dm1 << "\n\n\n\n";
VERIFY_IS_APPROX(dm1,m.toDense());
for (int i=0; i<cols; ++i)
{
m.col(i).setConstant(i+1);
dm1.col(i).setConstant(i+1);
m.col(i).setConstant(static_cast<RealScalar>(i+1));
dm1.col(i).setConstant(static_cast<RealScalar>(i+1));
}
int d = std::min(rows,cols);
int a = std::max(0,cols-d-supers);

View File

@ -81,7 +81,7 @@ template<typename MatrixType> void product(const MatrixType& m)
m3 = m1;
m3 *= m1.transpose() * m2;
VERIFY_IS_APPROX(m3, m1 * (m1.transpose()*m2));
VERIFY_IS_APPROX(m3, m1.lazy() * (m1.transpose()*m2));
VERIFY_IS_APPROX(m3, m1 * (m1.transpose()*m2));
// continue testing Product.h: distributivity
VERIFY_IS_APPROX(square*(m1 + m2), square*m1+square*m2);
@ -109,26 +109,26 @@ template<typename MatrixType> void product(const MatrixType& m)
// test optimized operator+= path
res = square;
res += (m1 * m2.transpose()).lazy();
res.noalias() += m1 * m2.transpose();
VERIFY_IS_APPROX(res, square + m1 * m2.transpose());
if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1)
{
VERIFY(areNotApprox(res,square + m2 * m1.transpose()));
}
vcres = vc2;
vcres += (m1.transpose() * v1).lazy();
vcres.noalias() += m1.transpose() * v1;
VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1);
// test optimized operator-= path
res = square;
res -= (m1 * m2.transpose()).lazy();
res.noalias() -= m1 * m2.transpose();
VERIFY_IS_APPROX(res, square - (m1 * m2.transpose()));
if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1)
{
VERIFY(areNotApprox(res,square - m2 * m1.transpose()));
}
vcres = vc2;
vcres -= (m1.transpose() * v1).lazy();
vcres.noalias() -= m1.transpose() * v1;
VERIFY_IS_APPROX(vcres, vc2 - m1.transpose() * v1);
tm1 = m1;
@ -145,7 +145,7 @@ template<typename MatrixType> void product(const MatrixType& m)
VERIFY_IS_APPROX(res, m1 * m2.transpose());
res2 = square2;
res2 += (m1.transpose() * m2).lazy();
res2.noalias() += m1.transpose() * m2;
VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2);
if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1)
{

View File

@ -96,7 +96,7 @@ template<typename Scalar, int Size, int OtherSize> void symm(int size = Size, in
m2 = m1.template triangularView<UpperTriangular>(); rhs13 = rhs12;
VERIFY_IS_APPROX(rhs12 += (s1 * ((m2.adjoint()).template selfadjointView<LowerTriangular>() * (s2*rhs3).conjugate())).lazy(),
VERIFY_IS_APPROX(rhs12.noalias() += s1 * ((m2.adjoint()).template selfadjointView<LowerTriangular>() * (s2*rhs3).conjugate()),
rhs13 += (s1*m1.adjoint()) * (s2*rhs3).conjugate());
// test matrix * selfadjoint

View File

@ -90,9 +90,9 @@ namespace MatrixExponentialInternal {
{
typedef typename ei_traits<MatrixType>::Scalar Scalar;
const Scalar b[] = {120., 60., 12., 1.};
M2 = (M * M).lazy();
M2.noalias() = M * M;
tmp = b[3]*M2 + b[1]*Id;
U = (M * tmp).lazy();
U.noalias() = M * tmp;
V = b[2]*M2 + b[0]*Id;
}
@ -115,10 +115,10 @@ namespace MatrixExponentialInternal {
{
typedef typename ei_traits<MatrixType>::Scalar Scalar;
const Scalar b[] = {30240., 15120., 3360., 420., 30., 1.};
M2 = (M * M).lazy();
MatrixType M4 = (M2 * M2).lazy();
M2.noalias() = M * M;
MatrixType M4 = M2 * M2;
tmp = b[5]*M4 + b[3]*M2 + b[1]*Id;
U = (M * tmp).lazy();
U.noalias() = M * tmp;
V = b[4]*M4 + b[2]*M2 + b[0]*Id;
}
@ -141,11 +141,11 @@ namespace MatrixExponentialInternal {
{
typedef typename ei_traits<MatrixType>::Scalar Scalar;
const Scalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.};
M2 = (M * M).lazy();
MatrixType M4 = (M2 * M2).lazy();
MatrixType M6 = (M4 * M2).lazy();
M2.noalias() = M * M;
MatrixType M4 = M2 * M2;
MatrixType M6 = M4 * M2;
tmp = b[7]*M6 + b[5]*M4 + b[3]*M2 + b[1]*Id;
U = (M * tmp).lazy();
U.noalias() = M * tmp;
V = b[6]*M6 + b[4]*M4 + b[2]*M2 + b[0]*Id;
}
@ -169,12 +169,12 @@ namespace MatrixExponentialInternal {
typedef typename ei_traits<MatrixType>::Scalar Scalar;
const Scalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240.,
2162160., 110880., 3960., 90., 1.};
M2 = (M * M).lazy();
MatrixType M4 = (M2 * M2).lazy();
MatrixType M6 = (M4 * M2).lazy();
MatrixType M8 = (M6 * M2).lazy();
M2.noalias() = M * M;
MatrixType M4 = M2 * M2;
MatrixType M6 = M4 * M2;
MatrixType M8 = M6 * M2;
tmp = b[9]*M8 + b[7]*M6 + b[5]*M4 + b[3]*M2 + b[1]*Id;
U = (M * tmp).lazy();
U.noalias() = M * tmp;
V = b[8]*M8 + b[6]*M6 + b[4]*M4 + b[2]*M2 + b[0]*Id;
}
@ -199,15 +199,15 @@ namespace MatrixExponentialInternal {
const Scalar b[] = {64764752532480000., 32382376266240000., 7771770303897600.,
1187353796428800., 129060195264000., 10559470521600., 670442572800.,
33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.};
M2 = (M * M).lazy();
MatrixType M4 = (M2 * M2).lazy();
MatrixType M6 = (M4 * M2).lazy();
M2.noalias() = M * M;
MatrixType M4 = M2 * M2;
MatrixType M6 = M4 * M2;
V = b[13]*M6 + b[11]*M4 + b[9]*M2;
tmp = (M6 * V).lazy();
tmp.noalias() = M6 * V;
tmp += b[7]*M6 + b[5]*M4 + b[3]*M2 + b[1]*Id;
U = (M * tmp).lazy();
U.noalias() = M * tmp;
tmp = b[12]*M6 + b[10]*M4 + b[8]*M2;
V = (M6 * tmp).lazy();
V.noalias() = M6 * tmp;
V += b[6]*M6 + b[4]*M4 + b[2]*M2 + b[0]*Id;
}
@ -252,7 +252,7 @@ namespace MatrixExponentialInternal {
} else if (l1norm < 1.880152677804762e+000) {
pade5(M, Id, tmp1, tmp2, U, V);
} else {
const float maxnorm = 3.925724783138660;
const float maxnorm = 3.925724783138660f;
*squarings = std::max(0, (int)ceil(log2(l1norm / maxnorm)));
MatrixType A = M / std::pow(typename ei_traits<MatrixType>::Scalar(2), *squarings);
pade7(A, Id, tmp1, tmp2, U, V);
@ -294,7 +294,7 @@ namespace MatrixExponentialInternal {
{
MatrixType num, den, U, V;
MatrixType Id = MatrixType::Identity(M.rows(), M.cols());
float l1norm = M.cwise().abs().colwise().sum().maxCoeff();
float l1norm = static_cast<float>(M.cwise().abs().colwise().sum().maxCoeff());
int squarings;
computeUV_selector<MatrixType>::run(M, Id, num, den, U, V, l1norm, &squarings);
num = U + V; // numerator of Pade approximant

View File

@ -43,10 +43,10 @@ void test2dRotation(double tol)
A << 0, 1, -1, 0;
for (int i=0; i<=20; i++)
{
angle = pow(10, i / 5. - 2);
angle = static_cast<T>(pow(10, i / 5. - 2));
B << cos(angle), sin(angle), -sin(angle), cos(angle);
ei_matrix_exponential(angle*A, &C);
VERIFY(C.isApprox(B, tol));
VERIFY(C.isApprox(B, static_cast<T>(tol)));
}
}
@ -59,13 +59,13 @@ void test2dHyperbolicRotation(double tol)
for (int i=0; i<=20; i++)
{
angle = (i-10) / 2.0;
angle = static_cast<T>((i-10) / 2.0);
ch = std::cosh(angle);
sh = std::sinh(angle);
A << 0, angle*imagUnit, -angle*imagUnit, 0;
B << ch, sh*imagUnit, -sh*imagUnit, ch;
ei_matrix_exponential(A, &C);
VERIFY(C.isApprox(B, tol));
VERIFY(C.isApprox(B, static_cast<T>(tol)));
}
}
@ -77,13 +77,13 @@ void testPascal(double tol)
Matrix<T,Dynamic,Dynamic> A(size,size), B(size,size), C(size,size);
A.setZero();
for (int i=0; i<size-1; i++)
A(i+1,i) = i+1;
A(i+1,i) = static_cast<T>(i+1);
B.setZero();
for (int i=0; i<size; i++)
for (int j=0; j<=i; j++)
B(i,j) = binom(i,j);
B(i,j) = static_cast<T>(binom(i,j));
ei_matrix_exponential(A, &C);
VERIFY(C.isApprox(B, tol));
VERIFY(C.isApprox(B, static_cast<T>(tol)));
}
}
@ -98,11 +98,13 @@ void randomTest(const MatrixType& m, double tol)
MatrixType m1(rows, cols), m2(rows, cols), m3(rows, cols),
identity = MatrixType::Identity(rows, rows);
typedef typename NumTraits<typename ei_traits<MatrixType>::Scalar>::Real RealScalar;
for(int i = 0; i < g_repeat; i++) {
m1 = MatrixType::Random(rows, cols);
ei_matrix_exponential(m1, &m2);
ei_matrix_exponential(-m1, &m3);
VERIFY(identity.isApprox(m2 * m3, tol));
VERIFY(identity.isApprox(m2 * m3, static_cast<RealScalar>(tol)));
}
}