Added support for convolution and reshaping of tensors.

This commit is contained in:
Benoit Steiner 2014-06-06 16:25:16 -07:00
parent 8998f4099e
commit a961d72e65
6 changed files with 413 additions and 2 deletions

View File

@ -40,6 +40,8 @@
#include "unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h"
#include "unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h"
#include "unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h"
#include "unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h"
#include "unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h"
#include "unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h"
#include "unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h"

View File

@ -203,6 +203,13 @@ class TensorBase
return TensorContractionOp<const Dimensions, const Derived, const OtherDerived>(derived(), other.derived(), dims);
}
// Convolutions.
template<typename KernelDerived, typename Dimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorConvolutionOp<const Dimensions, const Derived, const KernelDerived>
convolve(const KernelDerived& kernel, const Dimensions& dims) const {
return TensorConvolutionOp<const Dimensions, const Derived, const KernelDerived>(derived(), kernel.derived(), dims);
}
// Coefficient-wise ternary operators.
template<typename ThenDerived, typename ElseDerived>
inline const TensorSelectOp<const Derived, const ThenDerived, const ElseDerived>
@ -210,6 +217,13 @@ class TensorBase
return TensorSelectOp<const Derived, const ThenDerived, const ElseDerived>(derived(), thenTensor.derived(), elseTensor.derived());
}
// Morphing operators (slicing tbd).
template <typename NewDimensions>
inline const TensorReshapingOp<const Derived, const NewDimensions>
reshape(const NewDimensions& newDimensions) const {
return TensorReshapingOp<const Derived, const NewDimensions>(derived(), newDimensions);
}
// Select the device on which to evaluate the expression.
template <typename DeviceType>
TensorDevice<Derived, DeviceType> device(const DeviceType& device) {

View File

@ -0,0 +1,206 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H
#define EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H
namespace Eigen {
/** \class TensorConvolution
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor convolution class.
*
*
*/
namespace internal {
template<typename Dimensions, typename InputXprType, typename KernelXprType>
struct traits<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> >
{
// Type promotion to handle the case where the types of the lhs and the rhs are different.
typedef typename internal::promote_storage_type<typename InputXprType::Scalar,
typename KernelXprType::Scalar>::ret Scalar;
typedef typename internal::packet_traits<Scalar>::type Packet;
typedef typename promote_storage_type<typename traits<InputXprType>::StorageKind,
typename traits<KernelXprType>::StorageKind>::ret StorageKind;
typedef typename promote_index_type<typename traits<InputXprType>::Index,
typename traits<KernelXprType>::Index>::type Index;
typedef typename InputXprType::Nested LhsNested;
typedef typename KernelXprType::Nested RhsNested;
typedef typename remove_reference<LhsNested>::type _LhsNested;
typedef typename remove_reference<RhsNested>::type _RhsNested;
};
template<typename Dimensions, typename InputXprType, typename KernelXprType>
struct eval<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType>, Eigen::Dense>
{
typedef const TensorConvolutionOp<Dimensions, InputXprType, KernelXprType>& type;
};
template<typename Dimensions, typename InputXprType, typename KernelXprType>
struct nested<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType>, 1, typename eval<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> >::type>
{
typedef TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> type;
};
} // end namespace internal
template<typename Indices, typename InputXprType, typename KernelXprType>
class TensorConvolutionOp : public TensorBase<TensorConvolutionOp<Indices, InputXprType, KernelXprType> >
{
public:
typedef typename Eigen::internal::traits<TensorConvolutionOp>::Scalar Scalar;
typedef typename Eigen::internal::traits<TensorConvolutionOp>::Packet Packet;
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
typedef typename internal::promote_storage_type<typename InputXprType::CoeffReturnType,
typename KernelXprType::CoeffReturnType>::ret CoeffReturnType;
typedef typename internal::promote_storage_type<typename InputXprType::PacketReturnType,
typename KernelXprType::PacketReturnType>::ret PacketReturnType;
typedef typename Eigen::internal::nested<TensorConvolutionOp>::type Nested;
typedef typename Eigen::internal::traits<TensorConvolutionOp>::StorageKind StorageKind;
typedef typename Eigen::internal::traits<TensorConvolutionOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorConvolutionOp(const InputXprType& input, const KernelXprType& kernel, const Indices& dims)
: m_input_xpr(input), m_kernel_xpr(kernel), m_indices(dims) {}
EIGEN_DEVICE_FUNC
const Indices& indices() const { return m_indices; }
/** \returns the nested expressions */
EIGEN_DEVICE_FUNC
const typename internal::remove_all<typename InputXprType::Nested>::type&
inputExpression() const { return m_input_xpr; }
EIGEN_DEVICE_FUNC
const typename internal::remove_all<typename KernelXprType::Nested>::type&
kernelExpression() const { return m_kernel_xpr; }
protected:
typename InputXprType::Nested m_input_xpr;
typename KernelXprType::Nested m_kernel_xpr;
const Indices m_indices;
};
template<typename Indices, typename InputArgType, typename KernelArgType>
struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelArgType> >
{
typedef TensorConvolutionOp<Indices, InputArgType, KernelArgType> XprType;
static const int NumDims = TensorEvaluator<InputArgType>::Dimensions::count;
static const int KernelDims = Indices::size;
typedef typename XprType::Index Index;
typedef DSizes<Index, NumDims> Dimensions;
enum {
IsAligned = TensorEvaluator<InputArgType>::IsAligned & TensorEvaluator<KernelArgType>::IsAligned,
PacketAccess = /*TensorEvaluator<InputArgType>::PacketAccess & TensorEvaluator<KernelArgType>::PacketAccess */
false,
};
TensorEvaluator(const XprType& op)
: m_inputImpl(op.inputExpression()), m_kernelImpl(op.kernelExpression()), m_dimensions(op.inputExpression().dimensions())
{
const typename TensorEvaluator<InputArgType>::Dimensions& input_dims = m_inputImpl.dimensions();
const typename TensorEvaluator<KernelArgType>::Dimensions& kernel_dims = m_kernelImpl.dimensions();
for (int i = 0; i < NumDims; ++i) {
if (i > 0) {
m_inputStride[i] = m_inputStride[i-1] * input_dims[i-1];
} else {
m_inputStride[0] = 1;
}
}
for (int i = 0; i < KernelDims; ++i) {
const Index index = op.indices()[i];
const Index input_dim = input_dims[index];
const Index kernel_dim = kernel_dims[i];
const Index result_dim = input_dim - kernel_dim + 1;
m_dimensions[index] = result_dim;
if (i > 0) {
m_kernelStride[i] = m_kernelStride[i-1] * kernel_dims[i-1];
} else {
m_kernelStride[0] = 1;
}
m_indexStride[i] = m_inputStride[index];
}
for (int i = 0; i < NumDims; ++i) {
if (i > 0) {
m_outputStride[i] = m_outputStride[i-1] * m_dimensions[i-1];
} else {
m_outputStride[0] = 1;
}
}
}
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketReturnType PacketReturnType;
const Dimensions& dimensions() const { return m_dimensions; }
void evalTo(typename XprType::Scalar* buffer) const {
for (int i = 0; i < dimensions().TotalSize(); ++i) {
buffer[i] += coeff(i);
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
{
Index startInput = 0;
for (int i = NumDims - 1; i >= 0; --i) {
const Index idx = index / m_outputStride[i];
startInput += idx * m_inputStride[i];
index -= idx * m_outputStride[i];
}
CoeffReturnType result = CoeffReturnType(0);
convolve(startInput, 0, 0, result);
return result;
}
/* TODO: vectorization
template<int LoadMode>
EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const
{
assert(false);
}*/
EIGEN_DEVICE_FUNC void convolve(Index firstIndex, Index firstKernel, int DimIndex, CoeffReturnType& accum) const {
for (int j = 0; j < m_kernelImpl.dimensions()[DimIndex]; ++j) {
const Index input = firstIndex + j * m_indexStride[DimIndex];
const Index kernel = firstKernel + j * m_kernelStride[DimIndex];
if (DimIndex < KernelDims-1) {
convolve(input, kernel, DimIndex+1, accum);
} else {
accum += m_inputImpl.coeff(input) * m_kernelImpl.coeff(kernel);
}
}
}
private:
array<Index, NumDims> m_inputStride;
array<Index, NumDims> m_outputStride;
array<Index, KernelDims> m_indexStride;
array<Index, KernelDims> m_kernelStride;
Dimensions m_dimensions;
TensorEvaluator<InputArgType> m_inputImpl;
TensorEvaluator<KernelArgType> m_kernelImpl;
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H

View File

@ -21,9 +21,9 @@ template<typename NullaryOp, typename PlainObjectType> class TensorCwiseNullaryO
template<typename UnaryOp, typename XprType> class TensorCwiseUnaryOp;
template<typename BinaryOp, typename LeftXprType, typename RightXprType> class TensorCwiseBinaryOp;
template<typename IfXprType, typename ThenXprType, typename ElseXprType> class TensorSelectOp;
template <typename XprType> class TensorReductionOp;
template<typename Dimensions, typename LeftXprType, typename RightXprType> class TensorContractionOp;
template<typename Dimensions, typename InputXprType, typename KernelXprType> class TensorConvolutionOp;
template<typename NewDimensions, typename XprType> class TensorReshapingOp;
template<typename ExpressionType, typename DeviceType> class TensorDevice;
// Move to internal?

View File

@ -0,0 +1,119 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H
#define EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H
namespace Eigen {
/** \class TensorReshaping
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor reshaping class.
*
*
*/
namespace internal {
template<typename XprType, typename NewDimensions>
struct traits<TensorReshapingOp<XprType, NewDimensions> >
{
// Type promotion to handle the case where the types of the lhs and the rhs are different.
typedef typename XprType::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type Packet;
typedef typename traits<XprType>::StorageKind StorageKind;
typedef typename traits<XprType>::Index Index;
typedef typename XprType::Nested Nested;
typedef typename remove_reference<Nested>::type _Nested;
};
template<typename XprType, typename NewDimensions>
struct eval<TensorReshapingOp<XprType, NewDimensions>, Eigen::Dense>
{
typedef const TensorReshapingOp<XprType, NewDimensions>& type;
};
template<typename XprType, typename NewDimensions>
struct nested<TensorReshapingOp<XprType, NewDimensions>, 1, typename eval<TensorReshapingOp<XprType, NewDimensions> >::type>
{
typedef TensorReshapingOp<XprType, NewDimensions> type;
};
} // end namespace internal
template<typename XprType, typename NewDimensions>
class TensorReshapingOp : public TensorBase<TensorReshapingOp<XprType, NewDimensions> >
{
public:
typedef typename Eigen::internal::traits<TensorReshapingOp>::Scalar Scalar;
typedef typename Eigen::internal::traits<TensorReshapingOp>::Packet Packet;
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketReturnType PacketReturnType;
typedef typename Eigen::internal::nested<TensorReshapingOp>::type Nested;
typedef typename Eigen::internal::traits<TensorReshapingOp>::StorageKind StorageKind;
typedef typename Eigen::internal::traits<TensorReshapingOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReshapingOp(const XprType& expr, const NewDimensions& dims)
: m_xpr(expr), m_dims(dims) {}
EIGEN_DEVICE_FUNC
const NewDimensions& dimensions() const { return m_dims; }
EIGEN_DEVICE_FUNC
const typename internal::remove_all<typename XprType::Nested>::type&
expression() const { return m_xpr; }
protected:
typename XprType::Nested m_xpr;
const NewDimensions m_dims;
};
template<typename ArgType, typename NewDimensions>
struct TensorEvaluator<const TensorReshapingOp<ArgType, NewDimensions> >
{
typedef TensorReshapingOp<ArgType, NewDimensions> XprType;
enum {
IsAligned = TensorEvaluator<ArgType>::IsAligned,
PacketAccess = TensorEvaluator<ArgType>::PacketAccess,
};
TensorEvaluator(const XprType& op)
: m_impl(op.expression()), m_dimensions(op.dimensions())
{ }
typedef typename XprType::Index Index;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketReturnType PacketReturnType;
const NewDimensions& dimensions() const { return m_dimensions; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
{
return m_impl.coeff(index);
}
template<int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
{
return m_impl.template packet<LoadMode>(index);
}
private:
NewDimensions m_dimensions;
TensorEvaluator<ArgType> m_impl;
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H

View File

@ -0,0 +1,70 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/CXX11/Tensor>
using Eigen::Tensor;
static void test_evals()
{
Tensor<float, 2> input(3, 3);
Tensor<float, 1> kernel(2);
input.setRandom();
kernel.setRandom();
Tensor<float, 2> result(2,3);
result.setZero();
Eigen::array<Tensor<float, 2>::Index, 1> dims3({0});
TensorEvaluator<decltype(input.convolve(kernel, dims3))> eval(input.convolve(kernel, dims3));
eval.evalTo(result.data());
EIGEN_STATIC_ASSERT(TensorEvaluator<decltype(input.convolve(kernel, dims3))>::NumDims==2ul, YOU_MADE_A_PROGRAMMING_MISTAKE);
VERIFY_IS_EQUAL(eval.dimensions()[0], 2);
VERIFY_IS_EQUAL(eval.dimensions()[1], 3);
VERIFY_IS_APPROX(result(0,0), input(0,0)*kernel(0) + input(1,0)*kernel(1)); // index 0
VERIFY_IS_APPROX(result(0,1), input(0,1)*kernel(0) + input(1,1)*kernel(1)); // index 2
VERIFY_IS_APPROX(result(0,2), input(0,2)*kernel(0) + input(1,2)*kernel(1)); // index 4
VERIFY_IS_APPROX(result(1,0), input(1,0)*kernel(0) + input(2,0)*kernel(1)); // index 1
VERIFY_IS_APPROX(result(1,1), input(1,1)*kernel(0) + input(2,1)*kernel(1)); // index 3
VERIFY_IS_APPROX(result(1,2), input(1,2)*kernel(0) + input(2,2)*kernel(1)); // index 5
}
static void test_expr()
{
Tensor<float, 2> input(3, 3);
Tensor<float, 2> kernel(2, 2);
input.setRandom();
kernel.setRandom();
Tensor<float, 2> result(2,2);
Eigen::array<ptrdiff_t, 2> dims({0, 1});
result = input.convolve(kernel, dims);
VERIFY_IS_APPROX(result(0,0), input(0,0)*kernel(0,0) + input(0,1)*kernel(0,1) +
input(1,0)*kernel(1,0) + input(1,1)*kernel(1,1));
VERIFY_IS_APPROX(result(0,1), input(0,1)*kernel(0,0) + input(0,2)*kernel(0,1) +
input(1,1)*kernel(1,0) + input(1,2)*kernel(1,1));
VERIFY_IS_APPROX(result(1,0), input(1,0)*kernel(0,0) + input(1,1)*kernel(0,1) +
input(2,0)*kernel(1,0) + input(2,1)*kernel(1,1));
VERIFY_IS_APPROX(result(1,1), input(1,1)*kernel(0,0) + input(1,2)*kernel(0,1) +
input(2,1)*kernel(1,0) + input(2,2)*kernel(1,1));
}
void test_cxx11_tensor_convolution()
{
CALL_SUBTEST(test_evals());
CALL_SUBTEST(test_expr());
}