rework the numeric traits now that we're using a namespace and no prefix

This commit is contained in:
Benoit Jacob 2007-10-12 05:56:36 +00:00
parent 3654ee8b07
commit a4626cc808
6 changed files with 65 additions and 53 deletions

View File

@ -84,7 +84,7 @@ typename NumTraits<Scalar>::Real Object<Scalar, Derived>::norm2() const
template<typename Scalar, typename Derived>
typename NumTraits<Scalar>::Real Object<Scalar, Derived>::norm() const
{
return Sqrt(norm2());
return NumTraits<typename NumTraits<Scalar>::Real>::sqrt(norm2());
}
template<typename Scalar, typename Derived>

View File

@ -34,7 +34,7 @@ bool Object<Scalar, Derived>::isApprox(const OtherDerived& other) const
{
return((*this - other).norm2()
<= std::min(norm2(), other.norm2())
* Abs2(NumTraits<Scalar>::epsilon()));
* NumTraits<Scalar>::epsilon2());
}
else
{
@ -50,7 +50,7 @@ bool Object<Scalar, Derived>::isNegligble(const Scalar& other) const
{
if(IsVector)
{
return(norm2() <= Abs2(other) * Abs2(NumTraits<Scalar>::epsilon()));
return(norm2() <= NumTraits<Scalar>::abs2(other) * NumTraits<Scalar>::epsilon2());
}
else
{
@ -67,7 +67,7 @@ bool Object<Scalar, Derived>::isNegligble(const Object<Scalar, OtherDerived>& ot
{
if(IsVector)
{
return(norm2() <= other.norm2() * Abs2(NumTraits<Scalar>::epsilon()));
return(norm2() <= other.norm2() * NumTraits<Scalar>::epsilon2());
}
else
{

View File

@ -39,6 +39,7 @@ template<> struct NumTraits<int>
static const bool HasFloatingPoint = false;
static int epsilon() { return 0; }
static int epsilon2() { return 0; }
static int real(const int& x) { return x; }
static int imag(const int& x) { EI_UNUSED(x); return 0; }
static int conj(const int& x) { return x; }
@ -47,10 +48,23 @@ template<> struct NumTraits<int>
static int abs2(const int& x) { return x*x; }
static int rand()
{
// "rand()%21" would be bad. always use the high-order bits, not the low-order bits.
// note: here (gcc 4.1) static_cast<int> seems to round the nearest int.
// I don't know if that's part of the standard.
return -10 + static_cast<int>(std::rand() / ((RAND_MAX + 1.0)/20.0));
// "rand() % n" is bad, they say, because the low-order bits are not random enough.
// However here, 21 is odd, so rand() % 21 uses the high-order bits
// as well, so there's no problem.
return (std::rand() % 21) - 10;
}
static bool negligible(const int& a, const int& b)
{
EI_UNUSED(b);
return(a == 0);
}
static bool approx(const int& a, const int& b)
{
return(a == b);
}
static bool lessThanOrApprox(const int& a, const int& b)
{
return(a <= b);
}
};
@ -64,6 +78,7 @@ template<> struct NumTraits<float>
static const bool HasFloatingPoint = true;
static float epsilon() { return 1e-5f; }
static float epsilon2() { return epsilon() * epsilon(); }
static float real(const float& x) { return x; }
static float imag(const float& x) { EI_UNUSED(x); return 0; }
static float conj(const float& x) { return x; }
@ -74,6 +89,18 @@ template<> struct NumTraits<float>
{
return std::rand() / (RAND_MAX/20.0f) - 10.0f;
}
static bool negligible(const float& a, const float& b)
{
return(abs(a) <= abs(b) * epsilon());
}
static bool approx(const float& a, const float& b)
{
return(abs(a - b) <= std::min(abs(a), abs(b)) * epsilon());
}
static bool lessThanOrApprox(const float& a, const float& b)
{
return(a <= b || approx(a, b));
}
};
template<> struct NumTraits<double>
@ -86,6 +113,7 @@ template<> struct NumTraits<double>
static const bool HasFloatingPoint = true;
static double epsilon() { return 1e-11; }
static double epsilon2() { return epsilon() * epsilon(); }
static double real(const double& x) { return x; }
static double imag(const double& x) { EI_UNUSED(x); return 0; }
static double conj(const double& x) { return x; }
@ -96,6 +124,18 @@ template<> struct NumTraits<double>
{
return std::rand() / (RAND_MAX/20.0) - 10.0;
}
static bool negligible(const double& a, const double& b)
{
return(abs(a) <= abs(b) * epsilon());
}
static bool approx(const double& a, const double& b)
{
return(abs(a - b) <= std::min(abs(a), abs(b)) * epsilon());
}
static bool lessThanOrApprox(const double& a, const double& b)
{
return(a <= b || approx(a, b));
}
};
template<typename _Real> struct NumTraits<std::complex<_Real> >
@ -109,6 +149,7 @@ template<typename _Real> struct NumTraits<std::complex<_Real> >
static const bool HasFloatingPoint = NumTraits<Real>::HasFloatingPoint;
static Real epsilon() { return NumTraits<Real>::epsilon(); }
static Real epsilon2() { return epsilon() * epsilon(); }
static Real real(const Complex& x) { return std::real(x); }
static Real imag(const Complex& x) { return std::imag(x); }
static Complex conj(const Complex& x) { return std::conj(x); }
@ -122,48 +163,16 @@ template<typename _Real> struct NumTraits<std::complex<_Real> >
{
return Complex(NumTraits<Real>::rand(), NumTraits<Real>::rand());
}
static bool negligible(const Complex& a, const Complex& b)
{
return(abs2(a) <= abs2(b) * epsilon2());
}
static bool approx(const Complex& a, const Complex& b)
{
return(NumTraits<Real>::approx(std::real(a), std::real(b))
&& NumTraits<Real>::approx(std::imag(a), std::imag(b)));
}
// lessThanOrApprox wouldn't make sense for complex numbers
};
template<typename T> typename NumTraits<T>::Real Real(const T& x)
{ return NumTraits<T>::real(x); }
template<typename T> typename NumTraits<T>::Real Imag(const T& x)
{ return NumTraits<T>::imag(x); }
template<typename T> T Conj(const T& x)
{ return NumTraits<T>::conj(x); }
template<typename T> typename NumTraits<T>::FloatingPoint Sqrt(const T& x)
{ return NumTraits<T>::sqrt(x); }
template<typename T> typename NumTraits<T>::RealFloatingPoint Abs(const T& x)
{ return NumTraits<T>::abs(x); }
template<typename T> typename NumTraits<T>::Real Abs2(const T& x)
{ return NumTraits<T>::abs2(x); }
template<typename T> T Rand()
{ return NumTraits<T>::rand(); }
template<typename T> bool Negligible(const T& a, const T& b)
{
return(Abs(a) <= Abs(b) * NumTraits<T>::epsilon());
}
template<typename T> bool Approx(const T& a, const T& b)
{
if(NumTraits<T>::IsFloat)
return(Abs(a - b) <= std::min(Abs(a), Abs(b)) * NumTraits<T>::epsilon());
else
return(a == b);
}
template<typename T> bool LessThanOrApprox(const T& a, const T& b)
{
if(NumTraits<T>::IsFloat)
return(a < b || Approx(a, b));
else
return(a <= b);
}
#endif // EI_NUMERIC_H

View File

@ -51,7 +51,7 @@ template<typename MatrixType> class Random
{
EI_UNUSED(row);
EI_UNUSED(col);
return Rand<Scalar>();
return NumTraits<Scalar>::rand();
}
protected:

View File

@ -25,7 +25,7 @@
#include "main.h"
genTest::genTest()
EigenTest::EigenTest()
{
unsigned int t = (unsigned int) time( NULL );
qDebug() << "Initializing random number generator with seed"

View File

@ -29,7 +29,7 @@
#include <QtTest/QtTest>
#include "../src/Core.h"
USING_EIGEN_DATA_TYPES
using namespace Eigen;
#include <cstdlib>
#include <ctime>
@ -62,6 +62,9 @@ template<typename T> bool TestNegligible(const T& a, const T& b)
return(Abs(a) <= Abs(b) * TestEpsilon<T>());
}
//template<typename Scalar, typename Derived, typename OtherDerived>
//bool TestNegligible
template<typename T> bool TestApprox(const T& a, const T& b)
{
if(Eigen::NumTraits<T>::IsFloat)