mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-02-17 18:09:55 +08:00
Patch by Gael Guennebaud: coeff-wise binary operators.
This unifies + and - and moreover this patch introduces coeff-wise * and / based on this. Also, corresponding test.
This commit is contained in:
parent
f12e9c53ac
commit
a2f8d4be6a
@ -18,8 +18,7 @@ namespace Eigen {
|
||||
#include "src/Core/Matrix.h"
|
||||
#include "src/Core/Cast.h"
|
||||
#include "src/Core/Eval.h"
|
||||
#include "src/Core/Sum.h"
|
||||
#include "src/Core/Difference.h"
|
||||
#include "src/Core/CwiseBinaryOp.h"
|
||||
#include "src/Core/Opposite.h"
|
||||
#include "src/Core/ScalarMultiple.h"
|
||||
#include "src/Core/Product.h"
|
||||
|
@ -1,6 +1,7 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@gmail.com>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
|
222
Eigen/src/Core/CwiseBinaryOp.h
Normal file
222
Eigen/src/Core/CwiseBinaryOp.h
Normal file
@ -0,0 +1,222 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@gmail.com>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_CWISE_BINARY_OP_H
|
||||
#define EIGEN_CWISE_BINARY_OP_H
|
||||
|
||||
/** \class CwiseBinaryOp
|
||||
*
|
||||
* \brief Generic expression of a coefficient-wise operator between two matrices or vectors
|
||||
*
|
||||
* \param BinaryOp template functor implementing the operator
|
||||
* \param Lhs the type of the left-hand side
|
||||
* \param Rhs the type of the right-hand side
|
||||
*
|
||||
* This class represents an expression of a generic binary operator of two matrices or vectors.
|
||||
* It is the return type of the operator+, operator-, cwiseiseProduct, cwiseQuotient between matrices or vectors, and most
|
||||
* of the time this is the only way it is used.
|
||||
*
|
||||
* \sa class CwiseProductOp, class CwiseQuotientOp
|
||||
*/
|
||||
template<template<typename BinaryOpScalar> class BinaryOp, typename Lhs, typename Rhs>
|
||||
class CwiseBinaryOp : NoOperatorEquals,
|
||||
public MatrixBase<typename Lhs::Scalar, CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
|
||||
{
|
||||
public:
|
||||
typedef typename Lhs::Scalar Scalar;
|
||||
typedef typename Lhs::Ref LhsRef;
|
||||
typedef typename Rhs::Ref RhsRef;
|
||||
friend class MatrixBase<Scalar, CwiseBinaryOp>;
|
||||
typedef MatrixBase<Scalar, CwiseBinaryOp> Base;
|
||||
|
||||
CwiseBinaryOp(const LhsRef& lhs, const RhsRef& rhs)
|
||||
: m_lhs(lhs), m_rhs(rhs)
|
||||
{
|
||||
assert(lhs.rows() == rhs.rows() && lhs.cols() == rhs.cols());
|
||||
}
|
||||
|
||||
private:
|
||||
enum {
|
||||
RowsAtCompileTime = Lhs::Traits::RowsAtCompileTime,
|
||||
ColsAtCompileTime = Lhs::Traits::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = Lhs::Traits::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = Lhs::Traits::MaxColsAtCompileTime
|
||||
};
|
||||
|
||||
const CwiseBinaryOp& _ref() const { return *this; }
|
||||
int _rows() const { return m_lhs.rows(); }
|
||||
int _cols() const { return m_lhs.cols(); }
|
||||
|
||||
Scalar _coeff(int row, int col) const
|
||||
{
|
||||
return BinaryOp<Scalar>::op(m_lhs.coeff(row, col), m_rhs.coeff(row, col));
|
||||
}
|
||||
|
||||
protected:
|
||||
const LhsRef m_lhs;
|
||||
const RhsRef m_rhs;
|
||||
};
|
||||
|
||||
/** \brief Template functor to compute the sum of two scalars
|
||||
*
|
||||
* \sa class CwiseBinaryOp, MatrixBase::operator+
|
||||
*/
|
||||
template<typename Scalar> struct CwiseSumOp {
|
||||
static Scalar op(const Scalar& a, const Scalar& b) { return a + b; }
|
||||
};
|
||||
|
||||
/** \brief Template functor to compute the difference of two scalars
|
||||
*
|
||||
* \sa class CwiseBinaryOp, MatrixBase::operator-
|
||||
*/
|
||||
template<typename Scalar> struct CwiseDifferenceOp {
|
||||
static Scalar op(const Scalar& a, const Scalar& b) { return a - b; }
|
||||
};
|
||||
|
||||
/** \brief Template functor to compute the product of two scalars
|
||||
*
|
||||
* \sa class CwiseBinaryOp, MatrixBase::cwiseProduct()
|
||||
*/
|
||||
template<typename Scalar> struct CwiseProductOp {
|
||||
static Scalar op(const Scalar& a, const Scalar& b) { return a * b; }
|
||||
};
|
||||
|
||||
/** \brief Template functor to compute the quotient of two scalars
|
||||
*
|
||||
* \sa class CwiseBinaryOp, MatrixBase::cwiseQuotient()
|
||||
*/
|
||||
template<typename Scalar> struct CwiseQuotientOp {
|
||||
static Scalar op(const Scalar& a, const Scalar& b) { return a / b; }
|
||||
};
|
||||
|
||||
/** \relates MatrixBase
|
||||
*
|
||||
* \returns an expression of the difference of \a mat1 and \a mat2
|
||||
*
|
||||
* \sa class CwiseBinaryOp, MatrixBase::operator-=()
|
||||
*/
|
||||
template<typename Scalar, typename Derived1, typename Derived2>
|
||||
const CwiseBinaryOp<CwiseDifferenceOp, Derived1, Derived2>
|
||||
operator-(const MatrixBase<Scalar, Derived1> &mat1, const MatrixBase<Scalar, Derived2> &mat2)
|
||||
{
|
||||
return CwiseBinaryOp<CwiseDifferenceOp, Derived1, Derived2>(mat1.ref(), mat2.ref());
|
||||
}
|
||||
|
||||
/** replaces \c *this by \c *this - \a other.
|
||||
*
|
||||
* \returns a reference to \c *this
|
||||
*/
|
||||
template<typename Scalar, typename Derived>
|
||||
template<typename OtherDerived>
|
||||
Derived &
|
||||
MatrixBase<Scalar, Derived>::operator-=(const MatrixBase<Scalar, OtherDerived> &other)
|
||||
{
|
||||
return *this = *this - other;
|
||||
}
|
||||
|
||||
|
||||
/** \relates MatrixBase
|
||||
*
|
||||
* \returns an expression of the sum of \a mat1 and \a mat2
|
||||
*
|
||||
* \sa class CwiseBinaryOp, MatrixBase::operator+=()
|
||||
*/
|
||||
template<typename Scalar, typename Derived1, typename Derived2>
|
||||
const CwiseBinaryOp<CwiseSumOp, Derived1, Derived2>
|
||||
operator+(const MatrixBase<Scalar, Derived1> &mat1, const MatrixBase<Scalar, Derived2> &mat2)
|
||||
{
|
||||
return CwiseBinaryOp<CwiseSumOp, Derived1, Derived2>(mat1.ref(), mat2.ref());
|
||||
}
|
||||
|
||||
/** replaces \c *this by \c *this + \a other.
|
||||
*
|
||||
* \returns a reference to \c *this
|
||||
*/
|
||||
template<typename Scalar, typename Derived>
|
||||
template<typename OtherDerived>
|
||||
Derived &
|
||||
MatrixBase<Scalar, Derived>::operator+=(const MatrixBase<Scalar, OtherDerived>& other)
|
||||
{
|
||||
return *this = *this + other;
|
||||
}
|
||||
|
||||
|
||||
/** \returns an expression of the Schur product (coefficient wise product) of *this and \a other
|
||||
*
|
||||
* \sa class CwiseBinaryOp
|
||||
*/
|
||||
template<typename Scalar, typename Derived>
|
||||
template<typename OtherDerived>
|
||||
const CwiseBinaryOp<CwiseProductOp, Derived, OtherDerived>
|
||||
MatrixBase<Scalar, Derived>::cwiseProduct(const MatrixBase<Scalar, OtherDerived> &other) const
|
||||
{
|
||||
return CwiseBinaryOp<CwiseProductOp, Derived, OtherDerived>(ref(), other.ref());
|
||||
}
|
||||
|
||||
|
||||
/** \returns an expression of the coefficient-wise quotient of *this and \a other
|
||||
*
|
||||
* \sa class CwiseBinaryOp
|
||||
*/
|
||||
template<typename Scalar, typename Derived>
|
||||
template<typename OtherDerived>
|
||||
const CwiseBinaryOp<CwiseQuotientOp, Derived, OtherDerived>
|
||||
MatrixBase<Scalar, Derived>::cwiseQuotient(const MatrixBase<Scalar, OtherDerived> &other) const
|
||||
{
|
||||
return CwiseBinaryOp<CwiseQuotientOp, Derived, OtherDerived>(ref(), other.ref());
|
||||
}
|
||||
|
||||
|
||||
/** \relates MatrixBase
|
||||
*
|
||||
* \returns an expression of a custom coefficient-wise operator of \a mat1 and \a mat2
|
||||
*
|
||||
* \param CustomBinaryOp template functor of the custom operator
|
||||
*
|
||||
* \sa class CwiseBinaryOp, MatrixBase::operator+, MatrixBase::operator-, MatrixBase::cwiseProduct, MatrixBase::cwiseQuotient
|
||||
*/
|
||||
template<template<typename BinaryOpScalar> class CustomBinaryOp, typename Scalar, typename Derived1, typename Derived2>
|
||||
const CwiseBinaryOp<CustomBinaryOp, Derived1, Derived2>
|
||||
cwise(const MatrixBase<Scalar, Derived1> &mat1, const MatrixBase<Scalar, Derived2> &mat2)
|
||||
{
|
||||
return CwiseBinaryOp<CustomBinaryOp, Derived1, Derived2>(mat1.ref(), mat2.ref());
|
||||
}
|
||||
|
||||
/** \returns an expression of a custom coefficient-wise operator of *this and \a other
|
||||
*
|
||||
* \param CustomBinaryOp template functor of the custom operator
|
||||
*
|
||||
* \sa class CwiseBinaryOp, MatrixBase::operator+, MatrixBase::operator-, MatrixBase::cwiseProduct, MatrixBase::cwiseQuotient
|
||||
*/
|
||||
template<typename Scalar, typename Derived>
|
||||
template<template<typename BinaryOpScalar> class CustomBinaryOp, typename OtherDerived>
|
||||
const CwiseBinaryOp<CustomBinaryOp, Derived, OtherDerived>
|
||||
MatrixBase<Scalar, Derived>::cwise(const MatrixBase<Scalar, OtherDerived> &other) const
|
||||
{
|
||||
return CwiseBinaryOp<CustomBinaryOp, Derived, OtherDerived>(ref(), other.ref());
|
||||
}
|
||||
|
||||
|
||||
#endif // EIGEN_CWISE_BINARY_OP_H
|
@ -69,7 +69,7 @@ struct DotUnroller<Index, 0, Derived1, Derived2>
|
||||
*/
|
||||
template<typename Scalar, typename Derived>
|
||||
template<typename OtherDerived>
|
||||
Scalar MatrixBase<Scalar, Derived>::dot(const OtherDerived& other) const
|
||||
Scalar MatrixBase<Scalar, Derived>::dot(const MatrixBase<Scalar, OtherDerived>& other) const
|
||||
{
|
||||
assert(Traits::IsVectorAtCompileTime
|
||||
&& OtherDerived::Traits::IsVectorAtCompileTime
|
||||
@ -79,7 +79,7 @@ Scalar MatrixBase<Scalar, Derived>::dot(const OtherDerived& other) const
|
||||
&& Traits::SizeAtCompileTime != Dynamic
|
||||
&& Traits::SizeAtCompileTime <= 16)
|
||||
DotUnroller<Traits::SizeAtCompileTime-1, Traits::SizeAtCompileTime,
|
||||
Derived, OtherDerived>
|
||||
Derived, MatrixBase<Scalar, OtherDerived> >
|
||||
::run(*static_cast<const Derived*>(this), other, res);
|
||||
else
|
||||
{
|
||||
@ -136,7 +136,7 @@ MatrixBase<Scalar, Derived>::normalized() const
|
||||
template<typename Scalar, typename Derived>
|
||||
template<typename OtherDerived>
|
||||
bool MatrixBase<Scalar, Derived>::isOrtho
|
||||
(const OtherDerived& other,
|
||||
(const MatrixBase<Scalar, OtherDerived>& other,
|
||||
typename NumTraits<Scalar>::Real prec) const
|
||||
{
|
||||
return ei_abs2(dot(other)) <= prec * prec * norm2() * other.norm2();
|
||||
|
@ -35,8 +35,9 @@ template<typename MatrixType, int BlockRows=Dynamic, int BlockCols=Dynamic> clas
|
||||
template<typename MatrixType> class Transpose;
|
||||
template<typename MatrixType> class Conjugate;
|
||||
template<typename MatrixType> class Opposite;
|
||||
template<typename Lhs, typename Rhs> class Sum;
|
||||
template<typename Lhs, typename Rhs> class Difference;
|
||||
template<template<typename BinaryOpScalar> class BinaryOp, typename Lhs, typename Rhs> class CwiseBinaryOp;
|
||||
template<typename Scalar> struct CwiseProductOp;
|
||||
template<typename Scalar> struct CwiseQuotientOp;
|
||||
template<typename Lhs, typename Rhs> class Product;
|
||||
template<typename MatrixType> class ScalarMultiple;
|
||||
template<typename MatrixType> class Random;
|
||||
|
@ -212,12 +212,13 @@ template<typename Scalar, typename Derived> class MatrixBase
|
||||
Scalar trace() const;
|
||||
|
||||
template<typename OtherDerived>
|
||||
Scalar dot(const OtherDerived& other) const;
|
||||
Scalar dot(const MatrixBase<Scalar, OtherDerived>& other) const;
|
||||
RealScalar norm2() const;
|
||||
RealScalar norm() const;
|
||||
const ScalarMultiple<Derived> normalized() const;
|
||||
template<typename OtherDerived>
|
||||
bool isOrtho(const OtherDerived& other, RealScalar prec = precision<Scalar>()) const;
|
||||
bool isOrtho(const MatrixBase<Scalar, OtherDerived>& other,
|
||||
RealScalar prec = precision<Scalar>()) const;
|
||||
bool isOrtho(RealScalar prec = precision<Scalar>()) const;
|
||||
|
||||
static const Eval<Random<Derived> > random(int rows, int cols);
|
||||
@ -262,6 +263,18 @@ template<typename Scalar, typename Derived> class MatrixBase
|
||||
|
||||
const Opposite<Derived> operator-() const;
|
||||
|
||||
template<typename OtherDerived>
|
||||
const CwiseBinaryOp<CwiseProductOp, Derived, OtherDerived>
|
||||
cwiseProduct(const MatrixBase<Scalar, OtherDerived> &other) const;
|
||||
|
||||
template<typename OtherDerived>
|
||||
const CwiseBinaryOp<CwiseQuotientOp, Derived, OtherDerived>
|
||||
cwiseQuotient(const MatrixBase<Scalar, OtherDerived> &other) const;
|
||||
|
||||
template<template<typename BinaryOpScalar> class CustomBinaryOp, typename OtherDerived>
|
||||
const CwiseBinaryOp<CustomBinaryOp, Derived, OtherDerived>
|
||||
cwise(const MatrixBase<Scalar, OtherDerived> &other) const;
|
||||
|
||||
template<typename OtherDerived>
|
||||
Derived& operator+=(const MatrixBase<Scalar, OtherDerived>& other);
|
||||
template<typename OtherDerived>
|
||||
|
@ -5,6 +5,7 @@ FIND_PACKAGE(Qt4 REQUIRED)
|
||||
INCLUDE_DIRECTORIES( ${QT_INCLUDE_DIR} )
|
||||
|
||||
SET(test_SRCS
|
||||
cwiseop.cpp
|
||||
main.cpp
|
||||
basicstuff.cpp
|
||||
linearstructure.cpp
|
||||
|
84
test/cwiseop.cpp
Normal file
84
test/cwiseop.cpp
Normal file
@ -0,0 +1,84 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "main.h"
|
||||
#include <iostream>
|
||||
#include <cmath>
|
||||
#include <cstdlib>
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template<typename Scalar> struct AddIfNull {
|
||||
static Scalar op(const Scalar a, const Scalar b) {return a<1e-3 ? b : a;}
|
||||
};
|
||||
|
||||
template<typename MatrixType> void cwiseops(const MatrixType& m)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef Matrix<Scalar, MatrixType::Traits::RowsAtCompileTime, 1> VectorType;
|
||||
|
||||
int rows = m.rows();
|
||||
int cols = m.cols();
|
||||
|
||||
MatrixType m1 = MatrixType::random(rows, cols),
|
||||
m2 = MatrixType::random(rows, cols),
|
||||
m3(rows, cols),
|
||||
mzero = MatrixType::zero(rows, cols),
|
||||
mones = MatrixType::ones(rows, cols),
|
||||
identity = Matrix<Scalar, MatrixType::Traits::RowsAtCompileTime, MatrixType::Traits::RowsAtCompileTime>
|
||||
::identity(rows, rows),
|
||||
square = Matrix<Scalar, MatrixType::Traits::RowsAtCompileTime, MatrixType::Traits::RowsAtCompileTime>
|
||||
::random(rows, rows);
|
||||
VectorType v1 = VectorType::random(rows),
|
||||
v2 = VectorType::random(rows),
|
||||
vzero = VectorType::zero(rows);
|
||||
|
||||
|
||||
m2 = m2.cwise<AddIfNull>(mones);
|
||||
//m2 = cwise<AddIfNull>(m2,mones);
|
||||
std::cout << m2 << "\n";
|
||||
|
||||
VERIFY_IS_APPROX( mzero, m1-m1);
|
||||
VERIFY_IS_APPROX( m2, m1+m2-m1);
|
||||
VERIFY_IS_APPROX( mones, m2.cwiseQuotient(m2));
|
||||
VERIFY_IS_APPROX( m1.cwiseProduct(m2), m2.cwiseProduct(m1));
|
||||
//VERIFY_IS_APPROX( m1, m2.cwiseProduct(m1).cwiseQuotient(m2));
|
||||
|
||||
// VERIFY_IS_APPROX( cwiseMin(m1,m2), cwiseMin(m2,m1) );
|
||||
// VERIFY_IS_APPROX( cwiseMin(m1,m1+mones), m1 );
|
||||
// VERIFY_IS_APPROX( cwiseMin(m1,m1-mones), m1-mones );
|
||||
}
|
||||
|
||||
void EigenTest::testCwiseops()
|
||||
{
|
||||
for(int i = 0; i < 1/*m_repeat*/ ; i++) {
|
||||
// cwiseops(Matrix<float, 1, 1>());
|
||||
// cwiseops(Matrix4d());
|
||||
// cwiseops(MatrixXcf(3, 3));
|
||||
cwiseops(MatrixXi(8, 12));
|
||||
// cwiseops(MatrixXcd(20, 20));
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Eigen
|
@ -121,6 +121,7 @@ class EigenTest : public QObject
|
||||
void testMiscMatrices();
|
||||
void testSmallVectors();
|
||||
void testMap();
|
||||
void testCwiseops();
|
||||
protected:
|
||||
int m_repeat;
|
||||
};
|
||||
|
Loading…
Reference in New Issue
Block a user