mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-30 17:40:05 +08:00
updated EigenSolver to use .coeff / .coeffRef
This commit is contained in:
parent
c9fb248c36
commit
a2f71f9d7e
@ -162,7 +162,7 @@ void EigenSolver<MatrixType,IsSelfadjoint>::tridiagonalization(RealVectorType& e
|
||||
|
||||
if (scale == 0.0)
|
||||
{
|
||||
eivali[i] = eivalr[i-1];
|
||||
eivali.coeffRef(i) = eivalr.coeff(i-1);
|
||||
eivalr.start(i) = m_eivec.row(i-1).start(i);
|
||||
m_eivec.corner(TopLeft, i, i) = m_eivec.corner(TopLeft, i, i).diagonal().asDiagonal();
|
||||
}
|
||||
@ -172,28 +172,28 @@ void EigenSolver<MatrixType,IsSelfadjoint>::tridiagonalization(RealVectorType& e
|
||||
eivalr.start(i) /= scale;
|
||||
h = eivalr.start(i).cwiseAbs2().sum();
|
||||
|
||||
Scalar f = eivalr[i-1];
|
||||
Scalar f = eivalr.coeff(i-1);
|
||||
Scalar g = ei_sqrt(h);
|
||||
if (f > 0)
|
||||
g = -g;
|
||||
eivali[i] = scale * g;
|
||||
eivali.coeffRef(i) = scale * g;
|
||||
h = h - f * g;
|
||||
eivalr[i-1] = f - g;
|
||||
eivalr.coeffRef(i-1) = f - g;
|
||||
eivali.start(i).setZero();
|
||||
|
||||
// Apply similarity transformation to remaining columns.
|
||||
for (int j = 0; j < i; j++)
|
||||
{
|
||||
f = eivalr[j];
|
||||
m_eivec(j,i) = f;
|
||||
g = eivali[j] + m_eivec(j,j) * f;
|
||||
f = eivalr.coeff(j);
|
||||
m_eivec.coeffRef(j,i) = f;
|
||||
g = eivali.coeff(j) + m_eivec.coeff(j,j) * f;
|
||||
int bSize = i-j-1;
|
||||
if (bSize>0)
|
||||
{
|
||||
g += (m_eivec.col(j).block(j+1, bSize).transpose() * eivalr.block(j+1, bSize))(0,0);
|
||||
eivali.block(j+1, bSize) += m_eivec.col(j).block(j+1, bSize) * f;
|
||||
}
|
||||
eivali[j] = g;
|
||||
eivali.coeffRef(j) = g;
|
||||
}
|
||||
|
||||
f = (eivali.start(i).transpose() * eivalr.start(i))(0,0);
|
||||
@ -206,15 +206,15 @@ void EigenSolver<MatrixType,IsSelfadjoint>::tridiagonalization(RealVectorType& e
|
||||
eivalr.start(i) = m_eivec.row(i-1).start(i);
|
||||
m_eivec.row(i).start(i).setZero();
|
||||
}
|
||||
eivalr[i] = h;
|
||||
eivalr.coeffRef(i) = h;
|
||||
}
|
||||
|
||||
// Accumulate transformations.
|
||||
for (int i = 0; i < n-1; i++)
|
||||
{
|
||||
m_eivec(n-1,i) = m_eivec(i,i);
|
||||
m_eivec(i,i) = 1.0;
|
||||
Scalar h = eivalr[i+1];
|
||||
m_eivec.coeffRef(n-1,i) = m_eivec.coeff(i,i);
|
||||
m_eivec.coeffRef(i,i) = 1.0;
|
||||
Scalar h = eivalr.coeff(i+1);
|
||||
// FIXME this does not looks very stable ;)
|
||||
if (h != 0.0)
|
||||
{
|
||||
@ -226,8 +226,8 @@ void EigenSolver<MatrixType,IsSelfadjoint>::tridiagonalization(RealVectorType& e
|
||||
}
|
||||
eivalr = m_eivec.row(eivalr.size()-1);
|
||||
m_eivec.row(eivalr.size()-1).setZero();
|
||||
m_eivec(n-1,n-1) = 1.0;
|
||||
eivali[0] = 0.0;
|
||||
m_eivec.coeffRef(n-1,n-1) = 1.0;
|
||||
eivali.coeffRef(0) = 0.0;
|
||||
}
|
||||
|
||||
|
||||
@ -243,9 +243,9 @@ void EigenSolver<MatrixType,IsSelfadjoint>::tql2(RealVectorType& eivalr, RealVec
|
||||
int n = eivalr.size();
|
||||
|
||||
for (int i = 1; i < n; i++) {
|
||||
eivali[i-1] = eivali[i];
|
||||
eivali.coeffRef(i-1) = eivali.coeff(i);
|
||||
}
|
||||
eivali[n-1] = 0.0;
|
||||
eivali.coeffRef(n-1) = 0.0;
|
||||
|
||||
Scalar f = 0.0;
|
||||
Scalar tst1 = 0.0;
|
||||
@ -253,13 +253,13 @@ void EigenSolver<MatrixType,IsSelfadjoint>::tql2(RealVectorType& eivalr, RealVec
|
||||
for (int l = 0; l < n; l++)
|
||||
{
|
||||
// Find small subdiagonal element
|
||||
tst1 = std::max(tst1,ei_abs(eivalr[l]) + ei_abs(eivali[l]));
|
||||
tst1 = std::max(tst1,ei_abs(eivalr.coeff(l)) + ei_abs(eivali.coeff(l)));
|
||||
int m = l;
|
||||
|
||||
while ( (m < n) && (ei_abs(eivali[m]) > eps*tst1) )
|
||||
while ( (m < n) && (ei_abs(eivali.coeff(m)) > eps*tst1) )
|
||||
m++;
|
||||
|
||||
// If m == l, eivalr[l] is an eigenvalue,
|
||||
// If m == l, eivalr.coeff(l) is an eigenvalue,
|
||||
// otherwise, iterate.
|
||||
if (m > l)
|
||||
{
|
||||
@ -269,26 +269,26 @@ void EigenSolver<MatrixType,IsSelfadjoint>::tql2(RealVectorType& eivalr, RealVec
|
||||
iter = iter + 1;
|
||||
|
||||
// Compute implicit shift
|
||||
Scalar g = eivalr[l];
|
||||
Scalar p = (eivalr[l+1] - g) / (2.0 * eivali[l]);
|
||||
Scalar g = eivalr.coeff(l);
|
||||
Scalar p = (eivalr.coeff(l+1) - g) / (2.0 * eivali.coeff(l));
|
||||
Scalar r = hypot(p,1.0);
|
||||
if (p < 0)
|
||||
r = -r;
|
||||
|
||||
eivalr[l] = eivali[l] / (p + r);
|
||||
eivalr[l+1] = eivali[l] * (p + r);
|
||||
Scalar dl1 = eivalr[l+1];
|
||||
Scalar h = g - eivalr[l];
|
||||
eivalr.coeffRef(l) = eivali.coeff(l) / (p + r);
|
||||
eivalr.coeffRef(l+1) = eivali.coeff(l) * (p + r);
|
||||
Scalar dl1 = eivalr.coeff(l+1);
|
||||
Scalar h = g - eivalr.coeff(l);
|
||||
if (l+2<n)
|
||||
eivalr.end(n-l-2) -= RealVectorTypeX::constant(n-l-2, h);
|
||||
f = f + h;
|
||||
|
||||
// Implicit QL transformation.
|
||||
p = eivalr[m];
|
||||
p = eivalr.coeff(m);
|
||||
Scalar c = 1.0;
|
||||
Scalar c2 = c;
|
||||
Scalar c3 = c;
|
||||
Scalar el1 = eivali[l+1];
|
||||
Scalar el1 = eivali.coeff(l+1);
|
||||
Scalar s = 0.0;
|
||||
Scalar s2 = 0.0;
|
||||
for (int i = m-1; i >= l; i--)
|
||||
@ -296,32 +296,32 @@ void EigenSolver<MatrixType,IsSelfadjoint>::tql2(RealVectorType& eivalr, RealVec
|
||||
c3 = c2;
|
||||
c2 = c;
|
||||
s2 = s;
|
||||
g = c * eivali[i];
|
||||
g = c * eivali.coeff(i);
|
||||
h = c * p;
|
||||
r = hypot(p,eivali[i]);
|
||||
eivali[i+1] = s * r;
|
||||
s = eivali[i] / r;
|
||||
r = hypot(p,eivali.coeff(i));
|
||||
eivali.coeffRef(i+1) = s * r;
|
||||
s = eivali.coeff(i) / r;
|
||||
c = p / r;
|
||||
p = c * eivalr[i] - s * g;
|
||||
eivalr[i+1] = h + s * (c * g + s * eivalr[i]);
|
||||
p = c * eivalr.coeff(i) - s * g;
|
||||
eivalr.coeffRef(i+1) = h + s * (c * g + s * eivalr.coeff(i));
|
||||
|
||||
// Accumulate transformation.
|
||||
for (int k = 0; k < n; k++)
|
||||
{
|
||||
h = m_eivec(k,i+1);
|
||||
m_eivec(k,i+1) = s * m_eivec(k,i) + c * h;
|
||||
m_eivec(k,i) = c * m_eivec(k,i) - s * h;
|
||||
h = m_eivec.coeff(k,i+1);
|
||||
m_eivec.coeffRef(k,i+1) = s * m_eivec.coeff(k,i) + c * h;
|
||||
m_eivec.coeffRef(k,i) = c * m_eivec.coeff(k,i) - s * h;
|
||||
}
|
||||
}
|
||||
p = -s * s2 * c3 * el1 * eivali[l] / dl1;
|
||||
eivali[l] = s * p;
|
||||
eivalr[l] = c * p;
|
||||
p = -s * s2 * c3 * el1 * eivali.coeff(l) / dl1;
|
||||
eivali.coeffRef(l) = s * p;
|
||||
eivalr.coeffRef(l) = c * p;
|
||||
|
||||
// Check for convergence.
|
||||
} while (ei_abs(eivali[l]) > eps*tst1);
|
||||
} while (ei_abs(eivali.coeff(l)) > eps*tst1);
|
||||
}
|
||||
eivalr[l] = eivalr[l] + f;
|
||||
eivali[l] = 0.0;
|
||||
eivalr.coeffRef(l) = eivalr.coeff(l) + f;
|
||||
eivali.coeffRef(l) = 0.0;
|
||||
}
|
||||
|
||||
// Sort eigenvalues and corresponding vectors.
|
||||
@ -329,18 +329,18 @@ void EigenSolver<MatrixType,IsSelfadjoint>::tql2(RealVectorType& eivalr, RealVec
|
||||
for (int i = 0; i < n-1; i++)
|
||||
{
|
||||
int k = i;
|
||||
Scalar minValue = eivalr[i];
|
||||
Scalar minValue = eivalr.coeff(i);
|
||||
for (int j = i+1; j < n; j++)
|
||||
{
|
||||
if (eivalr[j] < minValue)
|
||||
if (eivalr.coeff(j) < minValue)
|
||||
{
|
||||
k = j;
|
||||
minValue = eivalr[j];
|
||||
minValue = eivalr.coeff(j);
|
||||
}
|
||||
}
|
||||
if (k != i)
|
||||
{
|
||||
std::swap(eivalr[i], eivalr[k]);
|
||||
std::swap(eivalr.coeffRef(i), eivalr.coeffRef(k));
|
||||
m_eivec.col(i).swap(m_eivec.col(k));
|
||||
}
|
||||
}
|
||||
@ -371,14 +371,14 @@ void EigenSolver<MatrixType,IsSelfadjoint>::orthes(MatrixType& matH, RealVectorT
|
||||
// FIXME could be rewritten, but this one looks better wrt cache
|
||||
for (int i = high; i >= m; i--)
|
||||
{
|
||||
ort[i] = matH(i,m-1)/scale;
|
||||
h += ort[i] * ort[i];
|
||||
ort.coeffRef(i) = matH.coeff(i,m-1)/scale;
|
||||
h += ort.coeff(i) * ort.coeff(i);
|
||||
}
|
||||
Scalar g = ei_sqrt(h);
|
||||
if (ort[m] > 0)
|
||||
if (ort.coeff(m) > 0)
|
||||
g = -g;
|
||||
h = h - ort[m] * g;
|
||||
ort[m] = ort[m] - g;
|
||||
h = h - ort.coeff(m) * g;
|
||||
ort.coeffRef(m) = ort.coeff(m) - g;
|
||||
|
||||
// Apply Householder similarity transformation
|
||||
// H = (I-u*u'/h)*H*(I-u*u')/h)
|
||||
@ -389,8 +389,8 @@ void EigenSolver<MatrixType,IsSelfadjoint>::orthes(MatrixType& matH, RealVectorT
|
||||
matH.block(0, m, high+1, bSize) -= ((matH.block(0, m, high+1, bSize) * ort.block(m, bSize)).lazy()
|
||||
* (ort.block(m, bSize)/h).transpose()).lazy();
|
||||
|
||||
ort[m] = scale*ort[m];
|
||||
matH(m,m-1) = scale*g;
|
||||
ort.coeffRef(m) = scale*ort.coeff(m);
|
||||
matH.coeffRef(m,m-1) = scale*g;
|
||||
}
|
||||
}
|
||||
|
||||
@ -399,12 +399,12 @@ void EigenSolver<MatrixType,IsSelfadjoint>::orthes(MatrixType& matH, RealVectorT
|
||||
|
||||
for (int m = high-1; m >= low+1; m--)
|
||||
{
|
||||
if (matH(m,m-1) != 0.0)
|
||||
if (matH.coeff(m,m-1) != 0.0)
|
||||
{
|
||||
ort.block(m+1, high-m) = matH.col(m-1).block(m+1, high-m);
|
||||
|
||||
int bSize = high-m+1;
|
||||
m_eivec.block(m, m, bSize, bSize) += ( (ort.block(m, bSize) / (matH(m,m-1) * ort[m] ) )
|
||||
m_eivec.block(m, m, bSize, bSize) += ( (ort.block(m, bSize) / (matH.coeff(m,m-1) * ort.coeff(m) ) )
|
||||
* (ort.block(m, bSize).transpose() * m_eivec.block(m, m, bSize, bSize)).lazy());
|
||||
}
|
||||
}
|
||||
@ -458,8 +458,8 @@ void EigenSolver<MatrixType,IsSelfadjoint>::hqr2(MatrixType& matH)
|
||||
// FIXME what's the purpose of the following since the condition is always false
|
||||
if ((j < low) || (j > high))
|
||||
{
|
||||
m_eivalues[j].real() = matH(j,j);
|
||||
m_eivalues[j].imag() = 0.0;
|
||||
m_eivalues.coeffRef(j).real() = matH.coeff(j,j);
|
||||
m_eivalues.coeffRef(j).imag() = 0.0;
|
||||
}
|
||||
norm += matH.col(j).start(std::min(j+1,nn)).cwiseAbs().sum();
|
||||
}
|
||||
@ -472,10 +472,10 @@ void EigenSolver<MatrixType,IsSelfadjoint>::hqr2(MatrixType& matH)
|
||||
int l = n;
|
||||
while (l > low)
|
||||
{
|
||||
s = ei_abs(matH(l-1,l-1)) + ei_abs(matH(l,l));
|
||||
s = ei_abs(matH.coeff(l-1,l-1)) + ei_abs(matH.coeff(l,l));
|
||||
if (s == 0.0)
|
||||
s = norm;
|
||||
if (ei_abs(matH(l,l-1)) < eps * s)
|
||||
if (ei_abs(matH.coeff(l,l-1)) < eps * s)
|
||||
break;
|
||||
l--;
|
||||
}
|
||||
@ -484,21 +484,21 @@ void EigenSolver<MatrixType,IsSelfadjoint>::hqr2(MatrixType& matH)
|
||||
// One root found
|
||||
if (l == n)
|
||||
{
|
||||
matH(n,n) = matH(n,n) + exshift;
|
||||
m_eivalues[n].real() = matH(n,n);
|
||||
m_eivalues[n].imag() = 0.0;
|
||||
matH.coeffRef(n,n) = matH.coeff(n,n) + exshift;
|
||||
m_eivalues.coeffRef(n).real() = matH.coeff(n,n);
|
||||
m_eivalues.coeffRef(n).imag() = 0.0;
|
||||
n--;
|
||||
iter = 0;
|
||||
}
|
||||
else if (l == n-1) // Two roots found
|
||||
{
|
||||
w = matH(n,n-1) * matH(n-1,n);
|
||||
p = (matH(n-1,n-1) - matH(n,n)) / 2.0;
|
||||
w = matH.coeff(n,n-1) * matH.coeff(n-1,n);
|
||||
p = (matH.coeff(n-1,n-1) - matH.coeff(n,n)) / 2.0;
|
||||
q = p * p + w;
|
||||
z = ei_sqrt(ei_abs(q));
|
||||
matH(n,n) = matH(n,n) + exshift;
|
||||
matH(n-1,n-1) = matH(n-1,n-1) + exshift;
|
||||
x = matH(n,n);
|
||||
matH.coeffRef(n,n) = matH.coeff(n,n) + exshift;
|
||||
matH.coeffRef(n-1,n-1) = matH.coeff(n-1,n-1) + exshift;
|
||||
x = matH.coeff(n,n);
|
||||
|
||||
// Scalar pair
|
||||
if (q >= 0)
|
||||
@ -508,14 +508,14 @@ void EigenSolver<MatrixType,IsSelfadjoint>::hqr2(MatrixType& matH)
|
||||
else
|
||||
z = p - z;
|
||||
|
||||
m_eivalues[n-1].real() = x + z;
|
||||
m_eivalues[n].real() = m_eivalues[n-1].real();
|
||||
m_eivalues.coeffRef(n-1).real() = x + z;
|
||||
m_eivalues.coeffRef(n).real() = m_eivalues.coeff(n-1).real();
|
||||
if (z != 0.0)
|
||||
m_eivalues[n].real() = x - w / z;
|
||||
m_eivalues.coeffRef(n).real() = x - w / z;
|
||||
|
||||
m_eivalues[n-1].imag() = 0.0;
|
||||
m_eivalues[n].imag() = 0.0;
|
||||
x = matH(n,n-1);
|
||||
m_eivalues.coeffRef(n-1).imag() = 0.0;
|
||||
m_eivalues.coeffRef(n).imag() = 0.0;
|
||||
x = matH.coeff(n,n-1);
|
||||
s = ei_abs(x) + ei_abs(z);
|
||||
p = x / s;
|
||||
q = z / s;
|
||||
@ -526,33 +526,33 @@ void EigenSolver<MatrixType,IsSelfadjoint>::hqr2(MatrixType& matH)
|
||||
// Row modification
|
||||
for (int j = n-1; j < nn; j++)
|
||||
{
|
||||
z = matH(n-1,j);
|
||||
matH(n-1,j) = q * z + p * matH(n,j);
|
||||
matH(n,j) = q * matH(n,j) - p * z;
|
||||
z = matH.coeff(n-1,j);
|
||||
matH.coeffRef(n-1,j) = q * z + p * matH.coeff(n,j);
|
||||
matH.coeffRef(n,j) = q * matH.coeff(n,j) - p * z;
|
||||
}
|
||||
|
||||
// Column modification
|
||||
for (int i = 0; i <= n; i++)
|
||||
{
|
||||
z = matH(i,n-1);
|
||||
matH(i,n-1) = q * z + p * matH(i,n);
|
||||
matH(i,n) = q * matH(i,n) - p * z;
|
||||
z = matH.coeff(i,n-1);
|
||||
matH.coeffRef(i,n-1) = q * z + p * matH.coeff(i,n);
|
||||
matH.coeffRef(i,n) = q * matH.coeff(i,n) - p * z;
|
||||
}
|
||||
|
||||
// Accumulate transformations
|
||||
for (int i = low; i <= high; i++)
|
||||
{
|
||||
z = m_eivec(i,n-1);
|
||||
m_eivec(i,n-1) = q * z + p * m_eivec(i,n);
|
||||
m_eivec(i,n) = q * m_eivec(i,n) - p * z;
|
||||
z = m_eivec.coeff(i,n-1);
|
||||
m_eivec.coeffRef(i,n-1) = q * z + p * m_eivec.coeff(i,n);
|
||||
m_eivec.coeffRef(i,n) = q * m_eivec.coeff(i,n) - p * z;
|
||||
}
|
||||
}
|
||||
else // Complex pair
|
||||
{
|
||||
m_eivalues[n-1].real() = x + p;
|
||||
m_eivalues[n].real() = x + p;
|
||||
m_eivalues[n-1].imag() = z;
|
||||
m_eivalues[n].imag() = -z;
|
||||
m_eivalues.coeffRef(n-1).real() = x + p;
|
||||
m_eivalues.coeffRef(n).real() = x + p;
|
||||
m_eivalues.coeffRef(n-1).imag() = z;
|
||||
m_eivalues.coeffRef(n).imag() = -z;
|
||||
}
|
||||
n = n - 2;
|
||||
iter = 0;
|
||||
@ -560,13 +560,13 @@ void EigenSolver<MatrixType,IsSelfadjoint>::hqr2(MatrixType& matH)
|
||||
else // No convergence yet
|
||||
{
|
||||
// Form shift
|
||||
x = matH(n,n);
|
||||
x = matH.coeff(n,n);
|
||||
y = 0.0;
|
||||
w = 0.0;
|
||||
if (l < n)
|
||||
{
|
||||
y = matH(n-1,n-1);
|
||||
w = matH(n,n-1) * matH(n-1,n);
|
||||
y = matH.coeff(n-1,n-1);
|
||||
w = matH.coeff(n,n-1) * matH.coeff(n-1,n);
|
||||
}
|
||||
|
||||
// Wilkinson's original ad hoc shift
|
||||
@ -574,8 +574,8 @@ void EigenSolver<MatrixType,IsSelfadjoint>::hqr2(MatrixType& matH)
|
||||
{
|
||||
exshift += x;
|
||||
for (int i = low; i <= n; i++)
|
||||
matH(i,i) -= x;
|
||||
s = ei_abs(matH(n,n-1)) + ei_abs(matH(n-1,n-2));
|
||||
matH.coeffRef(i,i) -= x;
|
||||
s = ei_abs(matH.coeff(n,n-1)) + ei_abs(matH.coeff(n-1,n-2));
|
||||
x = y = 0.75 * s;
|
||||
w = -0.4375 * s * s;
|
||||
}
|
||||
@ -592,7 +592,7 @@ void EigenSolver<MatrixType,IsSelfadjoint>::hqr2(MatrixType& matH)
|
||||
s = -s;
|
||||
s = x - w / ((y - x) / 2.0 + s);
|
||||
for (int i = low; i <= n; i++)
|
||||
matH(i,i) -= s;
|
||||
matH.coeffRef(i,i) -= s;
|
||||
exshift += s;
|
||||
x = y = w = 0.964;
|
||||
}
|
||||
@ -604,12 +604,12 @@ void EigenSolver<MatrixType,IsSelfadjoint>::hqr2(MatrixType& matH)
|
||||
int m = n-2;
|
||||
while (m >= l)
|
||||
{
|
||||
z = matH(m,m);
|
||||
z = matH.coeff(m,m);
|
||||
r = x - z;
|
||||
s = y - z;
|
||||
p = (r * s - w) / matH(m+1,m) + matH(m,m+1);
|
||||
q = matH(m+1,m+1) - z - r - s;
|
||||
r = matH(m+2,m+1);
|
||||
p = (r * s - w) / matH.coeff(m+1,m) + matH.coeff(m,m+1);
|
||||
q = matH.coeff(m+1,m+1) - z - r - s;
|
||||
r = matH.coeff(m+2,m+1);
|
||||
s = ei_abs(p) + ei_abs(q) + ei_abs(r);
|
||||
p = p / s;
|
||||
q = q / s;
|
||||
@ -617,9 +617,9 @@ void EigenSolver<MatrixType,IsSelfadjoint>::hqr2(MatrixType& matH)
|
||||
if (m == l) {
|
||||
break;
|
||||
}
|
||||
if (ei_abs(matH(m,m-1)) * (ei_abs(q) + ei_abs(r)) <
|
||||
eps * (ei_abs(p) * (ei_abs(matH(m-1,m-1)) + ei_abs(z) +
|
||||
ei_abs(matH(m+1,m+1)))))
|
||||
if (ei_abs(matH.coeff(m,m-1)) * (ei_abs(q) + ei_abs(r)) <
|
||||
eps * (ei_abs(p) * (ei_abs(matH.coeff(m-1,m-1)) + ei_abs(z) +
|
||||
ei_abs(matH.coeff(m+1,m+1)))))
|
||||
{
|
||||
break;
|
||||
}
|
||||
@ -628,9 +628,9 @@ void EigenSolver<MatrixType,IsSelfadjoint>::hqr2(MatrixType& matH)
|
||||
|
||||
for (int i = m+2; i <= n; i++)
|
||||
{
|
||||
matH(i,i-2) = 0.0;
|
||||
matH.coeffRef(i,i-2) = 0.0;
|
||||
if (i > m+2)
|
||||
matH(i,i-3) = 0.0;
|
||||
matH.coeffRef(i,i-3) = 0.0;
|
||||
}
|
||||
|
||||
// Double QR step involving rows l:n and columns m:n
|
||||
@ -638,9 +638,9 @@ void EigenSolver<MatrixType,IsSelfadjoint>::hqr2(MatrixType& matH)
|
||||
{
|
||||
int notlast = (k != n-1);
|
||||
if (k != m) {
|
||||
p = matH(k,k-1);
|
||||
q = matH(k+1,k-1);
|
||||
r = (notlast ? matH(k+2,k-1) : 0.0);
|
||||
p = matH.coeff(k,k-1);
|
||||
q = matH.coeff(k+1,k-1);
|
||||
r = (notlast ? matH.coeff(k+2,k-1) : 0.0);
|
||||
x = ei_abs(p) + ei_abs(q) + ei_abs(r);
|
||||
if (x != 0.0)
|
||||
{
|
||||
@ -661,9 +661,9 @@ void EigenSolver<MatrixType,IsSelfadjoint>::hqr2(MatrixType& matH)
|
||||
if (s != 0)
|
||||
{
|
||||
if (k != m)
|
||||
matH(k,k-1) = -s * x;
|
||||
matH.coeffRef(k,k-1) = -s * x;
|
||||
else if (l != m)
|
||||
matH(k,k-1) = -matH(k,k-1);
|
||||
matH.coeffRef(k,k-1) = -matH.coeff(k,k-1);
|
||||
|
||||
p = p + s;
|
||||
x = p / s;
|
||||
@ -675,40 +675,40 @@ void EigenSolver<MatrixType,IsSelfadjoint>::hqr2(MatrixType& matH)
|
||||
// Row modification
|
||||
for (int j = k; j < nn; j++)
|
||||
{
|
||||
p = matH(k,j) + q * matH(k+1,j);
|
||||
p = matH.coeff(k,j) + q * matH.coeff(k+1,j);
|
||||
if (notlast)
|
||||
{
|
||||
p = p + r * matH(k+2,j);
|
||||
matH(k+2,j) = matH(k+2,j) - p * z;
|
||||
p = p + r * matH.coeff(k+2,j);
|
||||
matH.coeffRef(k+2,j) = matH.coeff(k+2,j) - p * z;
|
||||
}
|
||||
matH(k,j) = matH(k,j) - p * x;
|
||||
matH(k+1,j) = matH(k+1,j) - p * y;
|
||||
matH.coeffRef(k,j) = matH.coeff(k,j) - p * x;
|
||||
matH.coeffRef(k+1,j) = matH.coeff(k+1,j) - p * y;
|
||||
}
|
||||
|
||||
// Column modification
|
||||
for (int i = 0; i <= std::min(n,k+3); i++)
|
||||
{
|
||||
p = x * matH(i,k) + y * matH(i,k+1);
|
||||
p = x * matH.coeff(i,k) + y * matH.coeff(i,k+1);
|
||||
if (notlast)
|
||||
{
|
||||
p = p + z * matH(i,k+2);
|
||||
matH(i,k+2) = matH(i,k+2) - p * r;
|
||||
p = p + z * matH.coeff(i,k+2);
|
||||
matH.coeffRef(i,k+2) = matH.coeff(i,k+2) - p * r;
|
||||
}
|
||||
matH(i,k) = matH(i,k) - p;
|
||||
matH(i,k+1) = matH(i,k+1) - p * q;
|
||||
matH.coeffRef(i,k) = matH.coeff(i,k) - p;
|
||||
matH.coeffRef(i,k+1) = matH.coeff(i,k+1) - p * q;
|
||||
}
|
||||
|
||||
// Accumulate transformations
|
||||
for (int i = low; i <= high; i++)
|
||||
{
|
||||
p = x * m_eivec(i,k) + y * m_eivec(i,k+1);
|
||||
p = x * m_eivec.coeff(i,k) + y * m_eivec.coeff(i,k+1);
|
||||
if (notlast)
|
||||
{
|
||||
p = p + z * m_eivec(i,k+2);
|
||||
m_eivec(i,k+2) = m_eivec(i,k+2) - p * r;
|
||||
p = p + z * m_eivec.coeff(i,k+2);
|
||||
m_eivec.coeffRef(i,k+2) = m_eivec.coeff(i,k+2) - p * r;
|
||||
}
|
||||
m_eivec(i,k) = m_eivec(i,k) - p;
|
||||
m_eivec(i,k+1) = m_eivec(i,k+1) - p * q;
|
||||
m_eivec.coeffRef(i,k) = m_eivec.coeff(i,k) - p;
|
||||
m_eivec.coeffRef(i,k+1) = m_eivec.coeff(i,k+1) - p * q;
|
||||
}
|
||||
} // (s != 0)
|
||||
} // k loop
|
||||
@ -723,20 +723,20 @@ void EigenSolver<MatrixType,IsSelfadjoint>::hqr2(MatrixType& matH)
|
||||
|
||||
for (n = nn-1; n >= 0; n--)
|
||||
{
|
||||
p = m_eivalues[n].real();
|
||||
q = m_eivalues[n].imag();
|
||||
p = m_eivalues.coeff(n).real();
|
||||
q = m_eivalues.coeff(n).imag();
|
||||
|
||||
// Scalar vector
|
||||
if (q == 0)
|
||||
{
|
||||
int l = n;
|
||||
matH(n,n) = 1.0;
|
||||
matH.coeffRef(n,n) = 1.0;
|
||||
for (int i = n-1; i >= 0; i--)
|
||||
{
|
||||
w = matH(i,i) - p;
|
||||
w = matH.coeff(i,i) - p;
|
||||
r = (matH.row(i).end(nn-l) * matH.col(n).end(nn-l))(0,0);
|
||||
|
||||
if (m_eivalues[i].imag() < 0.0)
|
||||
if (m_eivalues.coeff(i).imag() < 0.0)
|
||||
{
|
||||
z = w;
|
||||
s = r;
|
||||
@ -744,28 +744,28 @@ void EigenSolver<MatrixType,IsSelfadjoint>::hqr2(MatrixType& matH)
|
||||
else
|
||||
{
|
||||
l = i;
|
||||
if (m_eivalues[i].imag() == 0.0)
|
||||
if (m_eivalues.coeff(i).imag() == 0.0)
|
||||
{
|
||||
if (w != 0.0)
|
||||
matH(i,n) = -r / w;
|
||||
matH.coeffRef(i,n) = -r / w;
|
||||
else
|
||||
matH(i,n) = -r / (eps * norm);
|
||||
matH.coeffRef(i,n) = -r / (eps * norm);
|
||||
}
|
||||
else // Solve real equations
|
||||
{
|
||||
x = matH(i,i+1);
|
||||
y = matH(i+1,i);
|
||||
q = (m_eivalues[i].real() - p) * (m_eivalues[i].real() - p) + m_eivalues[i].imag() * m_eivalues[i].imag();
|
||||
x = matH.coeff(i,i+1);
|
||||
y = matH.coeff(i+1,i);
|
||||
q = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag();
|
||||
t = (x * s - z * r) / q;
|
||||
matH(i,n) = t;
|
||||
matH.coeffRef(i,n) = t;
|
||||
if (ei_abs(x) > ei_abs(z))
|
||||
matH(i+1,n) = (-r - w * t) / x;
|
||||
matH.coeffRef(i+1,n) = (-r - w * t) / x;
|
||||
else
|
||||
matH(i+1,n) = (-s - y * t) / z;
|
||||
matH.coeffRef(i+1,n) = (-s - y * t) / z;
|
||||
}
|
||||
|
||||
// Overflow control
|
||||
t = ei_abs(matH(i,n));
|
||||
t = ei_abs(matH.coeff(i,n));
|
||||
if ((eps * t) * t > 1)
|
||||
matH.col(n).end(nn-i) /= t;
|
||||
}
|
||||
@ -777,27 +777,27 @@ void EigenSolver<MatrixType,IsSelfadjoint>::hqr2(MatrixType& matH)
|
||||
int l = n-1;
|
||||
|
||||
// Last vector component imaginary so matrix is triangular
|
||||
if (ei_abs(matH(n,n-1)) > ei_abs(matH(n-1,n)))
|
||||
if (ei_abs(matH.coeff(n,n-1)) > ei_abs(matH.coeff(n-1,n)))
|
||||
{
|
||||
matH(n-1,n-1) = q / matH(n,n-1);
|
||||
matH(n-1,n) = -(matH(n,n) - p) / matH(n,n-1);
|
||||
matH.coeffRef(n-1,n-1) = q / matH.coeff(n,n-1);
|
||||
matH.coeffRef(n-1,n) = -(matH.coeff(n,n) - p) / matH.coeff(n,n-1);
|
||||
}
|
||||
else
|
||||
{
|
||||
cc = cdiv<Scalar>(0.0,-matH(n-1,n),matH(n-1,n-1)-p,q);
|
||||
matH(n-1,n-1) = ei_real(cc);
|
||||
matH(n-1,n) = ei_imag(cc);
|
||||
cc = cdiv<Scalar>(0.0,-matH.coeff(n-1,n),matH.coeff(n-1,n-1)-p,q);
|
||||
matH.coeffRef(n-1,n-1) = ei_real(cc);
|
||||
matH.coeffRef(n-1,n) = ei_imag(cc);
|
||||
}
|
||||
matH(n,n-1) = 0.0;
|
||||
matH(n,n) = 1.0;
|
||||
matH.coeffRef(n,n-1) = 0.0;
|
||||
matH.coeffRef(n,n) = 1.0;
|
||||
for (int i = n-2; i >= 0; i--)
|
||||
{
|
||||
Scalar ra,sa,vr,vi;
|
||||
ra = (matH.row(i).end(nn-l) * matH.col(n-1).end(nn-l)).lazy()(0,0);
|
||||
sa = (matH.row(i).end(nn-l) * matH.col(n).end(nn-l)).lazy()(0,0);
|
||||
w = matH(i,i) - p;
|
||||
w = matH.coeff(i,i) - p;
|
||||
|
||||
if (m_eivalues[i].imag() < 0.0)
|
||||
if (m_eivalues.coeff(i).imag() < 0.0)
|
||||
{
|
||||
z = w;
|
||||
r = ra;
|
||||
@ -806,40 +806,40 @@ void EigenSolver<MatrixType,IsSelfadjoint>::hqr2(MatrixType& matH)
|
||||
else
|
||||
{
|
||||
l = i;
|
||||
if (m_eivalues[i].imag() == 0)
|
||||
if (m_eivalues.coeff(i).imag() == 0)
|
||||
{
|
||||
cc = cdiv(-ra,-sa,w,q);
|
||||
matH(i,n-1) = ei_real(cc);
|
||||
matH(i,n) = ei_imag(cc);
|
||||
matH.coeffRef(i,n-1) = ei_real(cc);
|
||||
matH.coeffRef(i,n) = ei_imag(cc);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Solve complex equations
|
||||
x = matH(i,i+1);
|
||||
y = matH(i+1,i);
|
||||
vr = (m_eivalues[i].real() - p) * (m_eivalues[i].real() - p) + m_eivalues[i].imag() * m_eivalues[i].imag() - q * q;
|
||||
vi = (m_eivalues[i].real() - p) * 2.0 * q;
|
||||
x = matH.coeff(i,i+1);
|
||||
y = matH.coeff(i+1,i);
|
||||
vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q;
|
||||
vi = (m_eivalues.coeff(i).real() - p) * 2.0 * q;
|
||||
if ((vr == 0.0) && (vi == 0.0))
|
||||
vr = eps * norm * (ei_abs(w) + ei_abs(q) + ei_abs(x) + ei_abs(y) + ei_abs(z));
|
||||
|
||||
cc= cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi);
|
||||
matH(i,n-1) = ei_real(cc);
|
||||
matH(i,n) = ei_imag(cc);
|
||||
matH.coeffRef(i,n-1) = ei_real(cc);
|
||||
matH.coeffRef(i,n) = ei_imag(cc);
|
||||
if (ei_abs(x) > (ei_abs(z) + ei_abs(q)))
|
||||
{
|
||||
matH(i+1,n-1) = (-ra - w * matH(i,n-1) + q * matH(i,n)) / x;
|
||||
matH(i+1,n) = (-sa - w * matH(i,n) - q * matH(i,n-1)) / x;
|
||||
matH.coeffRef(i+1,n-1) = (-ra - w * matH.coeff(i,n-1) + q * matH.coeff(i,n)) / x;
|
||||
matH.coeffRef(i+1,n) = (-sa - w * matH.coeff(i,n) - q * matH.coeff(i,n-1)) / x;
|
||||
}
|
||||
else
|
||||
{
|
||||
cc = cdiv(-r-y*matH(i,n-1),-s-y*matH(i,n),z,q);
|
||||
matH(i+1,n-1) = ei_real(cc);
|
||||
matH(i+1,n) = ei_imag(cc);
|
||||
cc = cdiv(-r-y*matH.coeff(i,n-1),-s-y*matH.coeff(i,n),z,q);
|
||||
matH.coeffRef(i+1,n-1) = ei_real(cc);
|
||||
matH.coeffRef(i+1,n) = ei_imag(cc);
|
||||
}
|
||||
}
|
||||
|
||||
// Overflow control
|
||||
t = std::max(ei_abs(matH(i,n-1)),ei_abs(matH(i,n)));
|
||||
t = std::max(ei_abs(matH.coeff(i,n-1)),ei_abs(matH.coeff(i,n)));
|
||||
if ((eps * t) * t > 1)
|
||||
matH.block(i, n-1, nn-i, 2) /= t;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user