Add an efficient rank2 update function (like the level2 blas xSYR2 routine).

Note that it is already used in Tridiagonalization.
This commit is contained in:
Gael Guennebaud 2009-07-11 21:14:59 +02:00
parent b47dea8b7a
commit a2087cd7a3
11 changed files with 187 additions and 51 deletions

View File

@ -180,6 +180,7 @@ namespace Eigen {
#include "src/Core/TriangularMatrix.h"
#include "src/Core/SelfAdjointView.h"
#include "src/Core/SolveTriangular.h"
#include "src/Core/products/SelfadjointRank2Update.h"
} // namespace Eigen

View File

@ -76,7 +76,7 @@ struct ProductReturnType<Lhs,Rhs,CacheFriendlyProduct>
/* Helper class to analyze the factors of a Product expression.
* In particular it allows to pop out operator-, scalar multiples,
* and conjugate */
template<typename XprType> struct ei_product_factor_traits
template<typename XprType> struct ei_blas_traits
{
typedef typename ei_traits<XprType>::Scalar Scalar;
typedef XprType ActualXprType;
@ -85,15 +85,19 @@ template<typename XprType> struct ei_product_factor_traits
NeedToConjugate = false,
ActualAccess = int(ei_traits<XprType>::Flags)&DirectAccessBit ? HasDirectAccess : NoDirectAccess
};
typedef typename ei_meta_if<int(ActualAccess)==HasDirectAccess,
const ActualXprType&,
typename ActualXprType::PlainMatrixType
>::ret DirectLinearAccessType;
static inline const ActualXprType& extract(const XprType& x) { return x; }
static inline Scalar extractScalarFactor(const XprType&) { return Scalar(1); }
};
// pop conjugate
template<typename Scalar, typename NestedXpr> struct ei_product_factor_traits<CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestedXpr> >
: ei_product_factor_traits<NestedXpr>
template<typename Scalar, typename NestedXpr> struct ei_blas_traits<CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestedXpr> >
: ei_blas_traits<NestedXpr>
{
typedef ei_product_factor_traits<NestedXpr> Base;
typedef ei_blas_traits<NestedXpr> Base;
typedef CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestedXpr> XprType;
typedef typename Base::ActualXprType ActualXprType;
@ -106,10 +110,10 @@ template<typename Scalar, typename NestedXpr> struct ei_product_factor_traits<Cw
};
// pop scalar multiple
template<typename Scalar, typename NestedXpr> struct ei_product_factor_traits<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, NestedXpr> >
: ei_product_factor_traits<NestedXpr>
template<typename Scalar, typename NestedXpr> struct ei_blas_traits<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, NestedXpr> >
: ei_blas_traits<NestedXpr>
{
typedef ei_product_factor_traits<NestedXpr> Base;
typedef ei_blas_traits<NestedXpr> Base;
typedef CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, NestedXpr> XprType;
typedef typename Base::ActualXprType ActualXprType;
static inline const ActualXprType& extract(const XprType& x) { return Base::extract(x._expression()); }
@ -118,10 +122,10 @@ template<typename Scalar, typename NestedXpr> struct ei_product_factor_traits<Cw
};
// pop opposite
template<typename Scalar, typename NestedXpr> struct ei_product_factor_traits<CwiseUnaryOp<ei_scalar_opposite_op<Scalar>, NestedXpr> >
: ei_product_factor_traits<NestedXpr>
template<typename Scalar, typename NestedXpr> struct ei_blas_traits<CwiseUnaryOp<ei_scalar_opposite_op<Scalar>, NestedXpr> >
: ei_blas_traits<NestedXpr>
{
typedef ei_product_factor_traits<NestedXpr> Base;
typedef ei_blas_traits<NestedXpr> Base;
typedef CwiseUnaryOp<ei_scalar_opposite_op<Scalar>, NestedXpr> XprType;
typedef typename Base::ActualXprType ActualXprType;
static inline const ActualXprType& extract(const XprType& x) { return Base::extract(x._expression()); }
@ -130,11 +134,11 @@ template<typename Scalar, typename NestedXpr> struct ei_product_factor_traits<Cw
};
// pop opposite
template<typename NestedXpr> struct ei_product_factor_traits<NestByValue<NestedXpr> >
: ei_product_factor_traits<NestedXpr>
template<typename NestedXpr> struct ei_blas_traits<NestByValue<NestedXpr> >
: ei_blas_traits<NestedXpr>
{
typedef typename NestedXpr::Scalar Scalar;
typedef ei_product_factor_traits<NestedXpr> Base;
typedef ei_blas_traits<NestedXpr> Base;
typedef NestByValue<NestedXpr> XprType;
typedef typename Base::ActualXprType ActualXprType;
static inline const ActualXprType& extract(const XprType& x) { return Base::extract(static_cast<const NestedXpr&>(x)); }
@ -148,8 +152,8 @@ template<typename NestedXpr> struct ei_product_factor_traits<NestByValue<NestedX
*/
template<typename Lhs, typename Rhs> struct ei_product_mode
{
typedef typename ei_product_factor_traits<Lhs>::ActualXprType ActualLhs;
typedef typename ei_product_factor_traits<Rhs>::ActualXprType ActualRhs;
typedef typename ei_blas_traits<Lhs>::ActualXprType ActualLhs;
typedef typename ei_blas_traits<Rhs>::ActualXprType ActualRhs;
enum{
value = Lhs::MaxColsAtCompileTime == Dynamic
@ -600,10 +604,10 @@ static void ei_cache_friendly_product_rowmajor_times_vector(
template<typename ProductType,
int LhsRows = ei_traits<ProductType>::RowsAtCompileTime,
int LhsOrder = int(ei_traits<ProductType>::LhsFlags)&RowMajorBit ? RowMajor : ColMajor,
int LhsHasDirectAccess = ei_product_factor_traits<typename ei_traits<ProductType>::_LhsNested>::ActualAccess,
int LhsHasDirectAccess = ei_blas_traits<typename ei_traits<ProductType>::_LhsNested>::ActualAccess,
int RhsCols = ei_traits<ProductType>::ColsAtCompileTime,
int RhsOrder = int(ei_traits<ProductType>::RhsFlags)&RowMajorBit ? RowMajor : ColMajor,
int RhsHasDirectAccess = ei_product_factor_traits<typename ei_traits<ProductType>::_RhsNested>::ActualAccess>
int RhsHasDirectAccess = ei_blas_traits<typename ei_traits<ProductType>::_RhsNested>::ActualAccess>
struct ei_cache_friendly_product_selector
{
template<typename DestDerived>
@ -633,8 +637,8 @@ template<typename ProductType, int LhsRows, int RhsOrder, int RhsAccess>
struct ei_cache_friendly_product_selector<ProductType,LhsRows,ColMajor,HasDirectAccess,1,RhsOrder,RhsAccess>
{
typedef typename ProductType::Scalar Scalar;
typedef ei_product_factor_traits<typename ei_traits<ProductType>::_LhsNested> LhsProductTraits;
typedef ei_product_factor_traits<typename ei_traits<ProductType>::_RhsNested> RhsProductTraits;
typedef ei_blas_traits<typename ei_traits<ProductType>::_LhsNested> LhsProductTraits;
typedef ei_blas_traits<typename ei_traits<ProductType>::_RhsNested> RhsProductTraits;
typedef typename LhsProductTraits::ActualXprType ActualLhsType;
typedef typename RhsProductTraits::ActualXprType ActualRhsType;
@ -694,8 +698,8 @@ template<typename ProductType, int LhsOrder, int LhsAccess, int RhsCols>
struct ei_cache_friendly_product_selector<ProductType,1,LhsOrder,LhsAccess,RhsCols,RowMajor,HasDirectAccess>
{
typedef typename ProductType::Scalar Scalar;
typedef ei_product_factor_traits<typename ei_traits<ProductType>::_LhsNested> LhsProductTraits;
typedef ei_product_factor_traits<typename ei_traits<ProductType>::_RhsNested> RhsProductTraits;
typedef ei_blas_traits<typename ei_traits<ProductType>::_LhsNested> LhsProductTraits;
typedef ei_blas_traits<typename ei_traits<ProductType>::_RhsNested> RhsProductTraits;
typedef typename LhsProductTraits::ActualXprType ActualLhsType;
typedef typename RhsProductTraits::ActualXprType ActualRhsType;
@ -740,8 +744,8 @@ struct ei_cache_friendly_product_selector<ProductType,LhsRows,RowMajor,HasDirect
{
typedef typename ProductType::Scalar Scalar;
typedef ei_product_factor_traits<typename ei_traits<ProductType>::_LhsNested> LhsProductTraits;
typedef ei_product_factor_traits<typename ei_traits<ProductType>::_RhsNested> RhsProductTraits;
typedef ei_blas_traits<typename ei_traits<ProductType>::_LhsNested> LhsProductTraits;
typedef ei_blas_traits<typename ei_traits<ProductType>::_RhsNested> RhsProductTraits;
typedef typename LhsProductTraits::ActualXprType ActualLhsType;
typedef typename RhsProductTraits::ActualXprType ActualRhsType;
@ -783,8 +787,8 @@ struct ei_cache_friendly_product_selector<ProductType,1,LhsOrder,LhsAccess,RhsCo
{
typedef typename ProductType::Scalar Scalar;
typedef ei_product_factor_traits<typename ei_traits<ProductType>::_LhsNested> LhsProductTraits;
typedef ei_product_factor_traits<typename ei_traits<ProductType>::_RhsNested> RhsProductTraits;
typedef ei_blas_traits<typename ei_traits<ProductType>::_LhsNested> LhsProductTraits;
typedef ei_blas_traits<typename ei_traits<ProductType>::_RhsNested> RhsProductTraits;
typedef typename LhsProductTraits::ActualXprType ActualLhsType;
typedef typename RhsProductTraits::ActualXprType ActualRhsType;
@ -903,8 +907,8 @@ template<typename Lhs, typename Rhs, int ProductMode>
template<typename DestDerived>
inline void Product<Lhs,Rhs,ProductMode>::_cacheFriendlyEvalAndAdd(DestDerived& res, Scalar alpha) const
{
typedef ei_product_factor_traits<_LhsNested> LhsProductTraits;
typedef ei_product_factor_traits<_RhsNested> RhsProductTraits;
typedef ei_blas_traits<_LhsNested> LhsProductTraits;
typedef ei_blas_traits<_RhsNested> RhsProductTraits;
typedef typename LhsProductTraits::ActualXprType ActualLhsType;
typedef typename RhsProductTraits::ActualXprType ActualRhsType;

View File

@ -106,6 +106,16 @@ template<typename MatrixType, unsigned int UpLo> class SelfAdjointView
return ei_selfadjoint_vector_product_returntype<SelfAdjointView,OtherDerived>(*this, rhs.derived());
}
/** Perform a symmetric rank 2 update of the selfadjoint matrix \c *this:
* \f$ this = this + \alpha ( u v^* + v u^*) \f$
*
* The vectors \a u and \c v \b must be column vectors, however they can be
* a adjoint expression without any overhead. Only the meaningful triangular
* part of the matrix is updated, the rest is left unchanged.
*/
template<typename DerivedU, typename DerivedV>
void rank2update(const MatrixBase<DerivedU>& u, const MatrixBase<DerivedV>& v, Scalar alpha = Scalar(1));
/////////// Cholesky module ///////////
const LLT<PlainMatrixType, UpLo> llt() const;

View File

@ -33,12 +33,12 @@ template<typename Lhs, typename Rhs,
>
struct ei_triangular_solver_selector;
// forward substitution, row-major
// forward and backward substitution, row-major
template<typename Lhs, typename Rhs, int Mode>
struct ei_triangular_solver_selector<Lhs,Rhs,Mode,NoUnrolling,RowMajor>
{
typedef typename Rhs::Scalar Scalar;
typedef ei_product_factor_traits<Lhs> LhsProductTraits;
typedef ei_blas_traits<Lhs> LhsProductTraits;
typedef typename LhsProductTraits::ActualXprType ActualLhsType;
enum {
IsLowerTriangular = ((Mode&LowerTriangularBit)==LowerTriangularBit)
@ -60,6 +60,9 @@ struct ei_triangular_solver_selector<Lhs,Rhs,Mode,NoUnrolling,RowMajor>
int r = IsLowerTriangular ? pi : size - pi; // remaining size
if (r > 0)
{
// let's directly call the low level product function because:
// 1 - it is faster to compile
// 2 - it is slighlty faster at runtime
int startRow = IsLowerTriangular ? pi : pi-actualPanelWidth;
int startCol = IsLowerTriangular ? 0 : pi;
Block<Rhs,Dynamic,1> target(other,startRow,c,actualPanelWidth,1);
@ -86,17 +89,13 @@ struct ei_triangular_solver_selector<Lhs,Rhs,Mode,NoUnrolling,RowMajor>
}
};
// Implements the following configurations:
// - inv(LowerTriangular, ColMajor) * Column vectors
// - inv(LowerTriangular,UnitDiag,ColMajor) * Column vectors
// - inv(UpperTriangular, ColMajor) * Column vectors
// - inv(UpperTriangular,UnitDiag,ColMajor) * Column vectors
// forward and backward substitution, column-major
template<typename Lhs, typename Rhs, int Mode>
struct ei_triangular_solver_selector<Lhs,Rhs,Mode,NoUnrolling,ColMajor>
{
typedef typename Rhs::Scalar Scalar;
typedef typename ei_packet_traits<Scalar>::type Packet;
typedef ei_product_factor_traits<Lhs> LhsProductTraits;
typedef ei_blas_traits<Lhs> LhsProductTraits;
typedef typename LhsProductTraits::ActualXprType ActualLhsType;
enum {
PacketSize = ei_packet_traits<Scalar>::size,
@ -136,7 +135,7 @@ struct ei_triangular_solver_selector<Lhs,Rhs,Mode,NoUnrolling,ColMajor>
int r = IsLowerTriangular ? size - endBlock : startBlock; // remaining size
if (r > 0)
{
// let's directly call this function because:
// let's directly call the low level product function because:
// 1 - it is faster to compile
// 2 - it is slighlty faster at runtime
ei_cache_friendly_product_colmajor_times_vector<LhsProductTraits::NeedToConjugate,false>(

View File

@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public

View File

@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public

View File

@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public

View File

@ -0,0 +1,96 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_SELFADJOINTRANK2UPTADE_H
#define EIGEN_SELFADJOINTRANK2UPTADE_H
/* Optimized selfadjoint matrix += alpha * uv' + vu'
* It corresponds to the Level2 syr2 BLAS routine
*/
template<typename Scalar, typename UType, typename VType, int UpLo>
struct ei_selfadjoint_rank2_update_selector;
template<typename Scalar, typename UType, typename VType>
struct ei_selfadjoint_rank2_update_selector<Scalar,UType,VType,LowerTriangular>
{
static void run(Scalar* mat, int stride, const UType& u, const VType& v, Scalar alpha)
{
const int size = u.size();
// std::cerr << "lower \n" << u.transpose() << "\n" << v.transpose() << "\n\n";
for (int i=0; i<size; ++i)
{
// std::cerr <<
Map<Matrix<Scalar,Dynamic,1> >(mat+stride*i+i, size-i) +=
(alpha * ei_conj(u.coeff(i))) * v.end(size-i)
+ (alpha * ei_conj(v.coeff(i))) * u.end(size-i);
}
}
};
template<typename Scalar, typename UType, typename VType>
struct ei_selfadjoint_rank2_update_selector<Scalar,UType,VType,UpperTriangular>
{
static void run(Scalar* mat, int stride, const UType& u, const VType& v, Scalar alpha)
{
const int size = u.size();
for (int i=0; i<size; ++i)
Map<Matrix<Scalar,Dynamic,1> >(mat+stride*i, i+1) +=
(alpha * ei_conj(u.coeff(i))) * v.start(i+1)
+ (alpha * ei_conj(v.coeff(i))) * u.start(i+1);
}
};
template<bool Cond, typename T> struct ei_conj_expr_if
: ei_meta_if<!Cond, T,
CwiseUnaryOp<ei_scalar_conjugate_op<typename ei_traits<T>::Scalar>,T> > {};
template<typename MatrixType, unsigned int UpLo>
template<typename DerivedU, typename DerivedV>
void SelfAdjointView<MatrixType,UpLo>
::rank2update(const MatrixBase<DerivedU>& u, const MatrixBase<DerivedV>& v, Scalar alpha)
{
typedef ei_blas_traits<DerivedU> UBlasTraits;
typedef typename UBlasTraits::DirectLinearAccessType ActualUType;
typedef typename ei_cleantype<ActualUType>::type _ActualUType;
const ActualUType actualU = UBlasTraits::extract(u.derived());
typedef ei_blas_traits<DerivedV> VBlasTraits;
typedef typename VBlasTraits::DirectLinearAccessType ActualVType;
typedef typename ei_cleantype<ActualVType>::type _ActualVType;
const ActualVType actualV = VBlasTraits::extract(v.derived());
Scalar actualAlpha = alpha * UBlasTraits::extractScalarFactor(u.derived())
* VBlasTraits::extractScalarFactor(v.derived());
enum { IsRowMajor = (ei_traits<MatrixType>::Flags&RowMajorBit)?1:0 };
ei_selfadjoint_rank2_update_selector<Scalar,
typename ei_conj_expr_if<IsRowMajor ^ UBlasTraits::NeedToConjugate,_ActualUType>::ret,
typename ei_conj_expr_if<IsRowMajor ^ VBlasTraits::NeedToConjugate,_ActualVType>::ret,
(IsRowMajor ? (UpLo==UpperTriangular ? LowerTriangular : UpperTriangular) : UpLo)>
::run(const_cast<Scalar*>(_expression().data()),_expression().stride(),actualU,actualV,actualAlpha);
}
#endif // EIGEN_SELFADJOINTRANK2UPTADE_H

View File

@ -236,10 +236,8 @@ void Tridiagonalization<MatrixType>::_compute(MatrixType& matA, CoeffVectorType&
+ (h*ei_conj(h)*Scalar(-0.5)*(matA.col(i).end(n-i-1).dot(hCoeffs.end(n-i-1)))) *
matA.col(i).end(n-i-1);
// symmetric rank-2 update
for (int j1=i+1; j1<n; ++j1)
matA.col(j1).end(n-j1) -= matA.col(i).end(n-j1) * ei_conj(hCoeffs.coeff(j1-1))
+ hCoeffs.end(n-j1) * ei_conj(matA.coeff(j1,i));
matA.corner(BottomRight, n-i-1, n-i-1).template selfadjointView<LowerTriangular>()
.rank2update(matA.col(i).end(n-i-1), hCoeffs.end(n-i-1), -1);
// note: at that point matA(i+1,i+1) is the (i+1)-th element of the final diagonal
// note: the sequence of the beta values leads to the subdiagonal entries

View File

@ -119,8 +119,8 @@ void test_eigensolver_selfadjoint()
// very important to test a 3x3 matrix since we provide a special path for it
CALL_SUBTEST( selfadjointeigensolver(Matrix3f()) );
CALL_SUBTEST( selfadjointeigensolver(Matrix4d()) );
CALL_SUBTEST( selfadjointeigensolver(MatrixXf(7,7)) );
CALL_SUBTEST( selfadjointeigensolver(MatrixXcd(5,5)) );
CALL_SUBTEST( selfadjointeigensolver(MatrixXf(4,4)) );
CALL_SUBTEST( selfadjointeigensolver(MatrixXcd(7,7)) );
CALL_SUBTEST( selfadjointeigensolver(MatrixXd(19,19)) );
// some trivial but implementation-wise tricky cases

View File

@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@gmail.com>
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
@ -29,20 +29,29 @@ template<typename MatrixType> void product_selfadjoint(const MatrixType& m)
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
typedef Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> RowVectorType;
int rows = m.rows();
int cols = m.cols();
MatrixType m1 = MatrixType::Random(rows, cols),
m2 = MatrixType::Random(rows, cols);
m2 = MatrixType::Random(rows, cols),
m3;
VectorType v1 = VectorType::Random(rows),
v2 = VectorType::Random(rows);
RowVectorType r1 = RowVectorType::Random(rows),
r2 = RowVectorType::Random(rows);
Scalar s1 = ei_random<Scalar>(),
s2 = ei_random<Scalar>(),
s3 = ei_random<Scalar>();
m1 = m1.adjoint()*m1;
// lower
m2.setZero();
m2.template part<LowerTriangular>() = m1;
m2.template triangularView<LowerTriangular>() = m1;
ei_product_selfadjoint_vector<Scalar,MatrixType::Flags&RowMajorBit,LowerTriangularBit>
(cols,m2.data(),cols, v1.data(), v2.data());
VERIFY_IS_APPROX(v2, m1 * v1);
@ -50,11 +59,30 @@ template<typename MatrixType> void product_selfadjoint(const MatrixType& m)
// upper
m2.setZero();
m2.template part<UpperTriangular>() = m1;
m2.template triangularView<UpperTriangular>() = m1;
ei_product_selfadjoint_vector<Scalar,MatrixType::Flags&RowMajorBit,UpperTriangularBit>(cols,m2.data(),cols, v1.data(), v2.data());
VERIFY_IS_APPROX(v2, m1 * v1);
VERIFY_IS_APPROX((m2.template selfadjointView<UpperTriangular>() * v1).eval(), m1 * v1);
// rank2 update
m2 = m1.template triangularView<LowerTriangular>();
m2.template selfadjointView<LowerTriangular>().rank2update(v1,v2);
VERIFY_IS_APPROX(m2, (m1 + v1 * v2.adjoint()+ v2 * v1.adjoint()).template triangularView<LowerTriangular>().toDense());
m2 = m1.template triangularView<UpperTriangular>();
m2.template selfadjointView<UpperTriangular>().rank2update(-v1,s2*v2,s3);
VERIFY_IS_APPROX(m2, (m1 + (-s2*s3) * (v1 * v2.adjoint()+ v2 * v1.adjoint())).template triangularView<UpperTriangular>().toDense());
m2 = m1.template triangularView<UpperTriangular>();
m2.template selfadjointView<UpperTriangular>().rank2update(-r1.adjoint(),r2.adjoint()*s3,s1);
VERIFY_IS_APPROX(m2, (m1 + (-s3*s1) * (r1.adjoint() * r2 + r2.adjoint() * r1)).template triangularView<UpperTriangular>().toDense());
m2 = m1.template triangularView<LowerTriangular>();
m2.block(1,1,rows-1,cols-1).template selfadjointView<LowerTriangular>().rank2update(v1.end(rows-1),v2.start(cols-1));
m3 = m1;
m3.block(1,1,rows-1,cols-1) += v1.end(rows-1) * v2.start(cols-1).adjoint()+ v2.start(cols-1) * v1.end(rows-1).adjoint();
VERIFY_IS_APPROX(m2, m3.template triangularView<LowerTriangular>().toDense());
}
void test_product_selfadjoint()
@ -65,8 +93,8 @@ void test_product_selfadjoint()
CALL_SUBTEST( product_selfadjoint(Matrix3d()) );
CALL_SUBTEST( product_selfadjoint(MatrixXcf(4, 4)) );
CALL_SUBTEST( product_selfadjoint(MatrixXcd(21,21)) );
CALL_SUBTEST( product_selfadjoint(MatrixXd(17,17)) );
CALL_SUBTEST( product_selfadjoint(Matrix<float,Dynamic,Dynamic,RowMajor>(18,18)) );
CALL_SUBTEST( product_selfadjoint(MatrixXd(4,4)) );
CALL_SUBTEST( product_selfadjoint(Matrix<float,Dynamic,Dynamic,RowMajor>(17,17)) );
CALL_SUBTEST( product_selfadjoint(Matrix<std::complex<double>,Dynamic,Dynamic,RowMajor>(19, 19)) );
}
}