mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
merge with tip
This commit is contained in:
commit
a1e9e8d082
@ -1,4 +1,4 @@
|
||||
set(Eigen_HEADERS Core LU Cholesky QR Geometry Sparse Array SVD LeastSquares QtAlignedMalloc StdVector)
|
||||
set(Eigen_HEADERS Core LU Cholesky QR Geometry Sparse Array SVD LeastSquares QtAlignedMalloc StdVector Householder Jacobi)
|
||||
|
||||
if(EIGEN_BUILD_LIB)
|
||||
set(Eigen_SRCS
|
||||
|
2
Eigen/QR
2
Eigen/QR
@ -35,7 +35,7 @@ namespace Eigen {
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/QR/QR.h"
|
||||
#include "src/QR/HouseholderQR.h"
|
||||
#include "src/QR/FullPivotingHouseholderQR.h"
|
||||
#include "src/QR/ColPivotingHouseholderQR.h"
|
||||
#include "src/QR/Tridiagonalization.h"
|
||||
|
@ -43,38 +43,6 @@ Cwise<ExpressionType>::sqrt() const
|
||||
return _expression();
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns an expression of the coefficient-wise exponential of *this.
|
||||
*
|
||||
* Example: \include Cwise_exp.cpp
|
||||
* Output: \verbinclude Cwise_exp.out
|
||||
*
|
||||
* \sa pow(), log(), sin(), cos()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_exp_op)
|
||||
Cwise<ExpressionType>::exp() const
|
||||
{
|
||||
return _expression();
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns an expression of the coefficient-wise logarithm of *this.
|
||||
*
|
||||
* Example: \include Cwise_log.cpp
|
||||
* Output: \verbinclude Cwise_log.out
|
||||
*
|
||||
* \sa exp()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_log_op)
|
||||
Cwise<ExpressionType>::log() const
|
||||
{
|
||||
return _expression();
|
||||
}
|
||||
|
||||
/** \array_module
|
||||
*
|
||||
* \returns an expression of the coefficient-wise cosine of *this.
|
||||
|
@ -69,40 +69,6 @@ struct ei_functor_traits<ei_scalar_sqrt_op<Scalar> >
|
||||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* \array_module
|
||||
*
|
||||
* \brief Template functor to compute the exponential of a scalar
|
||||
*
|
||||
* \sa class CwiseUnaryOp, Cwise::exp()
|
||||
*/
|
||||
template<typename Scalar> struct ei_scalar_exp_op EIGEN_EMPTY_STRUCT {
|
||||
inline const Scalar operator() (const Scalar& a) const { return ei_exp(a); }
|
||||
typedef typename ei_packet_traits<Scalar>::type Packet;
|
||||
inline Packet packetOp(const Packet& a) const { return ei_pexp(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_exp_op<Scalar> >
|
||||
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::HasExp }; };
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* \array_module
|
||||
*
|
||||
* \brief Template functor to compute the logarithm of a scalar
|
||||
*
|
||||
* \sa class CwiseUnaryOp, Cwise::log()
|
||||
*/
|
||||
template<typename Scalar> struct ei_scalar_log_op EIGEN_EMPTY_STRUCT {
|
||||
inline const Scalar operator() (const Scalar& a) const { return ei_log(a); }
|
||||
typedef typename ei_packet_traits<Scalar>::type Packet;
|
||||
inline Packet packetOp(const Packet& a) const { return ei_plog(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_log_op<Scalar> >
|
||||
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::HasLog }; };
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* \array_module
|
||||
|
@ -7,3 +7,5 @@ ADD_SUBDIRECTORY(Array)
|
||||
ADD_SUBDIRECTORY(Geometry)
|
||||
ADD_SUBDIRECTORY(LeastSquares)
|
||||
ADD_SUBDIRECTORY(Sparse)
|
||||
ADD_SUBDIRECTORY(Jacobi)
|
||||
ADD_SUBDIRECTORY(Householder)
|
||||
|
@ -205,6 +205,35 @@ MatrixBase<Derived>::cast() const
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** \returns an expression of the coefficient-wise exponential of *this.
|
||||
*
|
||||
* Example: \include Cwise_exp.cpp
|
||||
* Output: \verbinclude Cwise_exp.out
|
||||
*
|
||||
* \sa pow(), log(), sin(), cos()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_exp_op)
|
||||
Cwise<ExpressionType>::exp() const
|
||||
{
|
||||
return _expression();
|
||||
}
|
||||
|
||||
/** \returns an expression of the coefficient-wise logarithm of *this.
|
||||
*
|
||||
* Example: \include Cwise_log.cpp
|
||||
* Output: \verbinclude Cwise_log.out
|
||||
*
|
||||
* \sa exp()
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_log_op)
|
||||
Cwise<ExpressionType>::log() const
|
||||
{
|
||||
return _expression();
|
||||
}
|
||||
|
||||
|
||||
/** \relates MatrixBase */
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::ScalarMultipleReturnType
|
||||
|
@ -298,6 +298,36 @@ template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_imag_op<Scalar> >
|
||||
{ enum { Cost = 0, PacketAccess = false }; };
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* \brief Template functor to compute the exponential of a scalar
|
||||
*
|
||||
* \sa class CwiseUnaryOp, Cwise::exp()
|
||||
*/
|
||||
template<typename Scalar> struct ei_scalar_exp_op EIGEN_EMPTY_STRUCT {
|
||||
inline const Scalar operator() (const Scalar& a) const { return ei_exp(a); }
|
||||
typedef typename ei_packet_traits<Scalar>::type Packet;
|
||||
inline Packet packetOp(const Packet& a) const { return ei_pexp(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_exp_op<Scalar> >
|
||||
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::HasExp }; };
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* \brief Template functor to compute the logarithm of a scalar
|
||||
*
|
||||
* \sa class CwiseUnaryOp, Cwise::log()
|
||||
*/
|
||||
template<typename Scalar> struct ei_scalar_log_op EIGEN_EMPTY_STRUCT {
|
||||
inline const Scalar operator() (const Scalar& a) const { return ei_log(a); }
|
||||
typedef typename ei_packet_traits<Scalar>::type Packet;
|
||||
inline Packet packetOp(const Packet& a) const { return ei_plog(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_log_op<Scalar> >
|
||||
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::HasLog }; };
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to multiply a scalar by a fixed other one
|
||||
*
|
||||
|
@ -63,7 +63,7 @@ inline void MatrixBase<Derived>::applyJacobiOnTheRight(int p, int q, Scalar c, S
|
||||
/** Computes the cosine-sine pair (\a c, \a s) such that its associated
|
||||
* rotation \f$ J = ( \begin{array}{cc} c & s \\ -s' c \end{array} )\f$
|
||||
* applied to both the right and left of the 2x2 matrix
|
||||
* \f$ B = ( \begin{array}{cc} x & y \\ _ & z \end{array} )\f$ yields
|
||||
* \f$ B = ( \begin{array}{cc} x & y \\ * & z \end{array} )\f$ yields
|
||||
* a diagonal matrix A: \f$ A = J' B J \f$
|
||||
*/
|
||||
template<typename Scalar>
|
||||
@ -149,7 +149,7 @@ void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY&
|
||||
|
||||
const Packet pc = ei_pset1(c);
|
||||
const Packet ps = ei_pset1(s);
|
||||
ei_conj_helper<true,false> cj;
|
||||
ei_conj_helper<NumTraits<Scalar>::IsComplex,false> cj;
|
||||
|
||||
for(int i=0; i<alignedStart; ++i)
|
||||
{
|
||||
|
@ -534,7 +534,16 @@ bool LU<MatrixType>::solve(
|
||||
) const
|
||||
{
|
||||
ei_assert(m_originalMatrix != 0 && "LU is not initialized.");
|
||||
if(m_rank==0) return false;
|
||||
result->resize(m_lu.cols(), b.cols());
|
||||
if(m_rank==0)
|
||||
{
|
||||
if(b.squaredNorm() == RealScalar(0))
|
||||
{
|
||||
result->setZero();
|
||||
return true;
|
||||
}
|
||||
else return false;
|
||||
}
|
||||
|
||||
/* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
|
||||
* So we proceed as follows:
|
||||
@ -577,7 +586,6 @@ bool LU<MatrixType>::solve(
|
||||
.solveInPlace(c.corner(TopLeft, m_rank, c.cols()));
|
||||
|
||||
// Step 4
|
||||
result->resize(m_lu.cols(), b.cols());
|
||||
for(int i = 0; i < m_rank; ++i) result->row(m_q.coeff(i)) = c.row(i);
|
||||
for(int i = m_rank; i < m_lu.cols(); ++i) result->row(m_q.coeff(i)).setZero();
|
||||
return true;
|
||||
|
@ -31,14 +31,14 @@
|
||||
*
|
||||
* \class ColPivotingHouseholderQR
|
||||
*
|
||||
* \brief Householder rank-revealing QR decomposition of a matrix
|
||||
* \brief Householder rank-revealing QR decomposition of a matrix with column-pivoting
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the QR decomposition
|
||||
*
|
||||
* This class performs a rank-revealing QR decomposition using Householder transformations.
|
||||
*
|
||||
* This decomposition performs full-pivoting in order to be rank-revealing and achieve optimal
|
||||
* numerical stability.
|
||||
* This decomposition performs column pivoting in order to be rank-revealing and improve
|
||||
* numerical stability. It is slower than HouseholderQR, and faster than FullPivotingHouseholderQR.
|
||||
*
|
||||
* \sa MatrixBase::colPivotingHouseholderQr()
|
||||
*/
|
||||
@ -82,6 +82,8 @@ template<typename MatrixType> class ColPivotingHouseholderQR
|
||||
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
|
||||
* *this is the QR decomposition, if any exists.
|
||||
*
|
||||
* \returns \c true if a solution exists, \c false if no solution exists.
|
||||
*
|
||||
* \param b the right-hand-side of the equation to solve.
|
||||
*
|
||||
* \param result a pointer to the vector/matrix in which to store the solution, if any exists.
|
||||
@ -95,13 +97,17 @@ template<typename MatrixType> class ColPivotingHouseholderQR
|
||||
* Output: \verbinclude ColPivotingHouseholderQR_solve.out
|
||||
*/
|
||||
template<typename OtherDerived, typename ResultType>
|
||||
void solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
|
||||
bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
|
||||
|
||||
MatrixType matrixQ(void) const;
|
||||
MatrixQType matrixQ(void) const;
|
||||
|
||||
/** \returns a reference to the matrix where the Householder QR decomposition is stored
|
||||
*/
|
||||
const MatrixType& matrixQR() const { return m_qr; }
|
||||
const MatrixType& matrixQR() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
|
||||
return m_qr;
|
||||
}
|
||||
|
||||
ColPivotingHouseholderQR& compute(const MatrixType& matrix);
|
||||
|
||||
@ -111,12 +117,122 @@ template<typename MatrixType> class ColPivotingHouseholderQR
|
||||
return m_cols_permutation;
|
||||
}
|
||||
|
||||
/** \returns the absolute value of the determinant of the matrix of which
|
||||
* *this is the QR decomposition. It has only linear complexity
|
||||
* (that is, O(n) where n is the dimension of the square matrix)
|
||||
* as the QR decomposition has already been computed.
|
||||
*
|
||||
* \note This is only for square matrices.
|
||||
*
|
||||
* \warning a determinant can be very big or small, so for matrices
|
||||
* of large enough dimension, there is a risk of overflow/underflow.
|
||||
* One way to work around that is to use logAbsDeterminant() instead.
|
||||
*
|
||||
* \sa logAbsDeterminant(), MatrixBase::determinant()
|
||||
*/
|
||||
typename MatrixType::RealScalar absDeterminant() const;
|
||||
|
||||
/** \returns the natural log of the absolute value of the determinant of the matrix of which
|
||||
* *this is the QR decomposition. It has only linear complexity
|
||||
* (that is, O(n) where n is the dimension of the square matrix)
|
||||
* as the QR decomposition has already been computed.
|
||||
*
|
||||
* \note This is only for square matrices.
|
||||
*
|
||||
* \note This method is useful to work around the risk of overflow/underflow that's inherent
|
||||
* to determinant computation.
|
||||
*
|
||||
* \sa absDeterminant(), MatrixBase::determinant()
|
||||
*/
|
||||
typename MatrixType::RealScalar logAbsDeterminant() const;
|
||||
|
||||
/** \returns the rank of the matrix of which *this is the QR decomposition.
|
||||
*
|
||||
* \note This is computed at the time of the construction of the QR decomposition. This
|
||||
* method does not perform any further computation.
|
||||
*/
|
||||
inline int rank() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
|
||||
return m_rank;
|
||||
}
|
||||
|
||||
/** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
|
||||
*
|
||||
* \note Since the rank is computed at the time of the construction of the QR decomposition, this
|
||||
* method almost does not perform any further computation.
|
||||
*/
|
||||
inline int dimensionOfKernel() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
|
||||
return m_qr.cols() - m_rank;
|
||||
}
|
||||
|
||||
/** \returns true if the matrix of which *this is the QR decomposition represents an injective
|
||||
* linear map, i.e. has trivial kernel; false otherwise.
|
||||
*
|
||||
* \note Since the rank is computed at the time of the construction of the QR decomposition, this
|
||||
* method almost does not perform any further computation.
|
||||
*/
|
||||
inline bool isInjective() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
|
||||
return m_rank == m_qr.cols();
|
||||
}
|
||||
|
||||
/** \returns true if the matrix of which *this is the QR decomposition represents a surjective
|
||||
* linear map; false otherwise.
|
||||
*
|
||||
* \note Since the rank is computed at the time of the construction of the QR decomposition, this
|
||||
* method almost does not perform any further computation.
|
||||
*/
|
||||
inline bool isSurjective() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
|
||||
return m_rank == m_qr.rows();
|
||||
}
|
||||
|
||||
/** \returns true if the matrix of which *this is the QR decomposition is invertible.
|
||||
*
|
||||
* \note Since the rank is computed at the time of the construction of the QR decomposition, this
|
||||
* method almost does not perform any further computation.
|
||||
*/
|
||||
inline bool isInvertible() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
|
||||
return isInjective() && isSurjective();
|
||||
}
|
||||
|
||||
/** Computes the inverse of the matrix of which *this is the QR decomposition.
|
||||
*
|
||||
* \param result a pointer to the matrix into which to store the inverse. Resized if needed.
|
||||
*
|
||||
* \note If this matrix is not invertible, *result is left with undefined coefficients.
|
||||
* Use isInvertible() to first determine whether this matrix is invertible.
|
||||
*
|
||||
* \sa inverse()
|
||||
*/
|
||||
inline void computeInverse(MatrixType *result) const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
|
||||
ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the inverse of a non-square matrix!");
|
||||
solve(MatrixType::Identity(m_qr.rows(), m_qr.cols()), result);
|
||||
}
|
||||
|
||||
/** \returns the inverse of the matrix of which *this is the QR decomposition.
|
||||
*
|
||||
* \note If this matrix is not invertible, the returned matrix has undefined coefficients.
|
||||
* Use isInvertible() to first determine whether this matrix is invertible.
|
||||
*
|
||||
* \sa computeInverse()
|
||||
*/
|
||||
inline MatrixType inverse() const
|
||||
{
|
||||
MatrixType result;
|
||||
computeInverse(&result);
|
||||
return result;
|
||||
}
|
||||
|
||||
protected:
|
||||
MatrixType m_qr;
|
||||
HCoeffsType m_hCoeffs;
|
||||
@ -129,6 +245,22 @@ template<typename MatrixType> class ColPivotingHouseholderQR
|
||||
|
||||
#ifndef EIGEN_HIDE_HEAVY_CODE
|
||||
|
||||
template<typename MatrixType>
|
||||
typename MatrixType::RealScalar ColPivotingHouseholderQR<MatrixType>::absDeterminant() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
|
||||
ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
|
||||
return ei_abs(m_qr.diagonal().prod());
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
typename MatrixType::RealScalar ColPivotingHouseholderQR<MatrixType>::logAbsDeterminant() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
|
||||
ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
|
||||
return m_qr.diagonal().cwise().abs().cwise().log().sum();
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
ColPivotingHouseholderQR<MatrixType>& ColPivotingHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
|
||||
{
|
||||
@ -199,12 +331,23 @@ ColPivotingHouseholderQR<MatrixType>& ColPivotingHouseholderQR<MatrixType>::comp
|
||||
|
||||
template<typename MatrixType>
|
||||
template<typename OtherDerived, typename ResultType>
|
||||
void ColPivotingHouseholderQR<MatrixType>::solve(
|
||||
bool ColPivotingHouseholderQR<MatrixType>::solve(
|
||||
const MatrixBase<OtherDerived>& b,
|
||||
ResultType *result
|
||||
) const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
|
||||
result->resize(m_qr.cols(), b.cols());
|
||||
if(m_rank==0)
|
||||
{
|
||||
if(b.squaredNorm() == RealScalar(0))
|
||||
{
|
||||
result->setZero();
|
||||
return true;
|
||||
}
|
||||
else return false;
|
||||
}
|
||||
|
||||
const int rows = m_qr.rows();
|
||||
const int cols = b.cols();
|
||||
ei_assert(b.rows() == rows);
|
||||
@ -219,18 +362,27 @@ void ColPivotingHouseholderQR<MatrixType>::solve(
|
||||
.applyHouseholderOnTheLeft(m_qr.col(k).end(remainingSize-1), m_hCoeffs.coeff(k), &temp.coeffRef(0));
|
||||
}
|
||||
|
||||
if(!isSurjective())
|
||||
{
|
||||
// is c is in the image of R ?
|
||||
RealScalar biggest_in_upper_part_of_c = c.corner(TopLeft, m_rank, c.cols()).cwise().abs().maxCoeff();
|
||||
RealScalar biggest_in_lower_part_of_c = c.corner(BottomLeft, rows-m_rank, c.cols()).cwise().abs().maxCoeff();
|
||||
if(!ei_isMuchSmallerThan(biggest_in_lower_part_of_c, biggest_in_upper_part_of_c, m_precision*4))
|
||||
return false;
|
||||
}
|
||||
|
||||
m_qr.corner(TopLeft, m_rank, m_rank)
|
||||
.template triangularView<UpperTriangular>()
|
||||
.solveInPlace(c.corner(TopLeft, m_rank, c.cols()));
|
||||
|
||||
result->resize(m_qr.cols(), b.cols());
|
||||
for(int i = 0; i < m_rank; ++i) result->row(m_cols_permutation.coeff(i)) = c.row(i);
|
||||
for(int i = m_rank; i < m_qr.cols(); ++i) result->row(m_cols_permutation.coeff(i)).setZero();
|
||||
return true;
|
||||
}
|
||||
|
||||
/** \returns the matrix Q */
|
||||
template<typename MatrixType>
|
||||
MatrixType ColPivotingHouseholderQR<MatrixType>::matrixQ() const
|
||||
typename ColPivotingHouseholderQR<MatrixType>::MatrixQType ColPivotingHouseholderQR<MatrixType>::matrixQ() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
|
||||
// compute the product H'_0 H'_1 ... H'_n-1,
|
||||
@ -239,7 +391,7 @@ MatrixType ColPivotingHouseholderQR<MatrixType>::matrixQ() const
|
||||
int rows = m_qr.rows();
|
||||
int cols = m_qr.cols();
|
||||
int size = std::min(rows,cols);
|
||||
MatrixType res = MatrixType::Identity(rows, rows);
|
||||
MatrixQType res = MatrixQType::Identity(rows, rows);
|
||||
Matrix<Scalar,1,MatrixType::RowsAtCompileTime> temp(rows);
|
||||
for (int k = size-1; k >= 0; k--)
|
||||
{
|
||||
|
@ -31,16 +31,16 @@
|
||||
*
|
||||
* \class FullPivotingHouseholderQR
|
||||
*
|
||||
* \brief Householder rank-revealing QR decomposition of a matrix
|
||||
* \brief Householder rank-revealing QR decomposition of a matrix with full pivoting
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the QR decomposition
|
||||
*
|
||||
* This class performs a rank-revealing QR decomposition using Householder transformations.
|
||||
*
|
||||
* This decomposition performs full-pivoting in order to be rank-revealing and achieve optimal
|
||||
* numerical stability.
|
||||
* This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal
|
||||
* numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivotingHouseholderQR.
|
||||
*
|
||||
* \sa MatrixBase::householderRrqr()
|
||||
* \sa MatrixBase::fullPivotingHouseholderQr()
|
||||
*/
|
||||
template<typename MatrixType> class FullPivotingHouseholderQR
|
||||
{
|
||||
@ -62,12 +62,11 @@ template<typename MatrixType> class FullPivotingHouseholderQR
|
||||
typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType;
|
||||
|
||||
/**
|
||||
* \brief Default Constructor.
|
||||
*
|
||||
* The default constructor is useful in cases in which the user intends to
|
||||
* perform decompositions via FullPivotingHouseholderQR::compute(const MatrixType&).
|
||||
*/
|
||||
/** \brief Default Constructor.
|
||||
*
|
||||
* The default constructor is useful in cases in which the user intends to
|
||||
* perform decompositions via FullPivotingHouseholderQR::compute(const MatrixType&).
|
||||
*/
|
||||
FullPivotingHouseholderQR() : m_qr(), m_hCoeffs(), m_isInitialized(false) {}
|
||||
|
||||
FullPivotingHouseholderQR(const MatrixType& matrix)
|
||||
@ -81,6 +80,8 @@ template<typename MatrixType> class FullPivotingHouseholderQR
|
||||
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
|
||||
* *this is the QR decomposition, if any exists.
|
||||
*
|
||||
* \returns \c true if a solution exists, \c false if no solution exists.
|
||||
*
|
||||
* \param b the right-hand-side of the equation to solve.
|
||||
*
|
||||
* \param result a pointer to the vector/matrix in which to store the solution, if any exists.
|
||||
@ -96,11 +97,15 @@ template<typename MatrixType> class FullPivotingHouseholderQR
|
||||
template<typename OtherDerived, typename ResultType>
|
||||
bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
|
||||
|
||||
MatrixType matrixQ(void) const;
|
||||
MatrixQType matrixQ(void) const;
|
||||
|
||||
/** \returns a reference to the matrix where the Householder QR decomposition is stored
|
||||
*/
|
||||
const MatrixType& matrixQR() const { return m_qr; }
|
||||
const MatrixType& matrixQR() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "FullPivotingHouseholderQR is not initialized.");
|
||||
return m_qr;
|
||||
}
|
||||
|
||||
FullPivotingHouseholderQR& compute(const MatrixType& matrix);
|
||||
|
||||
@ -125,11 +130,26 @@ template<typename MatrixType> class FullPivotingHouseholderQR
|
||||
*
|
||||
* \warning a determinant can be very big or small, so for matrices
|
||||
* of large enough dimension, there is a risk of overflow/underflow.
|
||||
* One way to work around that is to use logAbsDeterminant() instead.
|
||||
*
|
||||
* \sa MatrixBase::determinant()
|
||||
* \sa logAbsDeterminant(), MatrixBase::determinant()
|
||||
*/
|
||||
typename MatrixType::RealScalar absDeterminant() const;
|
||||
|
||||
/** \returns the natural log of the absolute value of the determinant of the matrix of which
|
||||
* *this is the QR decomposition. It has only linear complexity
|
||||
* (that is, O(n) where n is the dimension of the square matrix)
|
||||
* as the QR decomposition has already been computed.
|
||||
*
|
||||
* \note This is only for square matrices.
|
||||
*
|
||||
* \note This method is useful to work around the risk of overflow/underflow that's inherent
|
||||
* to determinant computation.
|
||||
*
|
||||
* \sa absDeterminant(), MatrixBase::determinant()
|
||||
*/
|
||||
typename MatrixType::RealScalar logAbsDeterminant() const;
|
||||
|
||||
/** \returns the rank of the matrix of which *this is the QR decomposition.
|
||||
*
|
||||
* \note This is computed at the time of the construction of the QR decomposition. This
|
||||
@ -238,6 +258,14 @@ typename MatrixType::RealScalar FullPivotingHouseholderQR<MatrixType>::absDeterm
|
||||
return ei_abs(m_qr.diagonal().prod());
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
typename MatrixType::RealScalar FullPivotingHouseholderQR<MatrixType>::logAbsDeterminant() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "FullPivotingHouseholderQR is not initialized.");
|
||||
ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
|
||||
return m_qr.diagonal().cwise().abs().cwise().log().sum();
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
FullPivotingHouseholderQR<MatrixType>& FullPivotingHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
|
||||
{
|
||||
@ -322,7 +350,16 @@ bool FullPivotingHouseholderQR<MatrixType>::solve(
|
||||
) const
|
||||
{
|
||||
ei_assert(m_isInitialized && "FullPivotingHouseholderQR is not initialized.");
|
||||
if(m_rank==0) return false;
|
||||
result->resize(m_qr.cols(), b.cols());
|
||||
if(m_rank==0)
|
||||
{
|
||||
if(b.squaredNorm() == RealScalar(0))
|
||||
{
|
||||
result->setZero();
|
||||
return true;
|
||||
}
|
||||
else return false;
|
||||
}
|
||||
|
||||
const int rows = m_qr.rows();
|
||||
const int cols = b.cols();
|
||||
@ -351,7 +388,6 @@ bool FullPivotingHouseholderQR<MatrixType>::solve(
|
||||
.template triangularView<UpperTriangular>()
|
||||
.solveInPlace(c.corner(TopLeft, m_rank, c.cols()));
|
||||
|
||||
result->resize(m_qr.cols(), b.cols());
|
||||
for(int i = 0; i < m_rank; ++i) result->row(m_cols_permutation.coeff(i)) = c.row(i);
|
||||
for(int i = m_rank; i < m_qr.cols(); ++i) result->row(m_cols_permutation.coeff(i)).setZero();
|
||||
return true;
|
||||
@ -359,7 +395,7 @@ bool FullPivotingHouseholderQR<MatrixType>::solve(
|
||||
|
||||
/** \returns the matrix Q */
|
||||
template<typename MatrixType>
|
||||
MatrixType FullPivotingHouseholderQR<MatrixType>::matrixQ() const
|
||||
typename FullPivotingHouseholderQR<MatrixType>::MatrixQType FullPivotingHouseholderQR<MatrixType>::matrixQ() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "FullPivotingHouseholderQR is not initialized.");
|
||||
// compute the product H'_0 H'_1 ... H'_n-1,
|
||||
@ -368,7 +404,7 @@ MatrixType FullPivotingHouseholderQR<MatrixType>::matrixQ() const
|
||||
int rows = m_qr.rows();
|
||||
int cols = m_qr.cols();
|
||||
int size = std::min(rows,cols);
|
||||
MatrixType res = MatrixType::Identity(rows, rows);
|
||||
MatrixQType res = MatrixQType::Identity(rows, rows);
|
||||
Matrix<Scalar,1,MatrixType::RowsAtCompileTime> temp(rows);
|
||||
for (int k = size-1; k >= 0; k--)
|
||||
{
|
||||
|
@ -2,6 +2,7 @@
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
@ -38,6 +39,10 @@
|
||||
* stored in a compact way compatible with LAPACK.
|
||||
*
|
||||
* Note that no pivoting is performed. This is \b not a rank-revealing decomposition.
|
||||
* If you want that feature, use FullPivotingHouseholderQR or ColPivotingHouseholderQR instead.
|
||||
*
|
||||
* This Householder QR decomposition is faster, but less numerically stable and less feature-full than
|
||||
* FullPivotingHouseholderQR or ColPivotingHouseholderQR.
|
||||
*
|
||||
* \sa MatrixBase::householderQr()
|
||||
*/
|
||||
@ -46,15 +51,17 @@ template<typename MatrixType> class HouseholderQR
|
||||
public:
|
||||
|
||||
enum {
|
||||
MinSizeAtCompileTime = EIGEN_ENUM_MIN(MatrixType::ColsAtCompileTime,MatrixType::RowsAtCompileTime)
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
Options = MatrixType::Options,
|
||||
DiagSizeAtCompileTime = EIGEN_ENUM_MIN(ColsAtCompileTime,RowsAtCompileTime)
|
||||
};
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef Block<MatrixType, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixRBlockType;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixTypeR;
|
||||
typedef Matrix<Scalar, MinSizeAtCompileTime, 1> HCoeffsType;
|
||||
typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixQType;
|
||||
typedef Matrix<Scalar, DiagSizeAtCompileTime, 1> HCoeffsType;
|
||||
typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType;
|
||||
|
||||
/**
|
||||
* \brief Default Constructor.
|
||||
@ -72,15 +79,6 @@ template<typename MatrixType> class HouseholderQR
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
/** \returns a read-only expression of the matrix R of the actual the QR decomposition */
|
||||
const TriangularView<NestByValue<MatrixRBlockType>, UpperTriangular>
|
||||
matrixR(void) const
|
||||
{
|
||||
ei_assert(m_isInitialized && "HouseholderQR is not initialized.");
|
||||
int cols = m_qr.cols();
|
||||
return MatrixRBlockType(m_qr, 0, 0, cols, cols).nestByValue().template triangularView<UpperTriangular>();
|
||||
}
|
||||
|
||||
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
|
||||
* *this is the QR decomposition, if any exists.
|
||||
*
|
||||
@ -99,15 +97,48 @@ template<typename MatrixType> class HouseholderQR
|
||||
template<typename OtherDerived, typename ResultType>
|
||||
void solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
|
||||
|
||||
MatrixType matrixQ(void) const;
|
||||
MatrixQType matrixQ(void) const;
|
||||
|
||||
/** \returns a reference to the matrix where the Householder QR decomposition is stored
|
||||
* in a LAPACK-compatible way.
|
||||
*/
|
||||
const MatrixType& matrixQR() const { return m_qr; }
|
||||
const MatrixType& matrixQR() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "HouseholderQR is not initialized.");
|
||||
return m_qr;
|
||||
}
|
||||
|
||||
HouseholderQR& compute(const MatrixType& matrix);
|
||||
|
||||
/** \returns the absolute value of the determinant of the matrix of which
|
||||
* *this is the QR decomposition. It has only linear complexity
|
||||
* (that is, O(n) where n is the dimension of the square matrix)
|
||||
* as the QR decomposition has already been computed.
|
||||
*
|
||||
* \note This is only for square matrices.
|
||||
*
|
||||
* \warning a determinant can be very big or small, so for matrices
|
||||
* of large enough dimension, there is a risk of overflow/underflow.
|
||||
* One way to work around that is to use logAbsDeterminant() instead.
|
||||
*
|
||||
* \sa logAbsDeterminant(), MatrixBase::determinant()
|
||||
*/
|
||||
typename MatrixType::RealScalar absDeterminant() const;
|
||||
|
||||
/** \returns the natural log of the absolute value of the determinant of the matrix of which
|
||||
* *this is the QR decomposition. It has only linear complexity
|
||||
* (that is, O(n) where n is the dimension of the square matrix)
|
||||
* as the QR decomposition has already been computed.
|
||||
*
|
||||
* \note This is only for square matrices.
|
||||
*
|
||||
* \note This method is useful to work around the risk of overflow/underflow that's inherent
|
||||
* to determinant computation.
|
||||
*
|
||||
* \sa absDeterminant(), MatrixBase::determinant()
|
||||
*/
|
||||
typename MatrixType::RealScalar logAbsDeterminant() const;
|
||||
|
||||
protected:
|
||||
MatrixType m_qr;
|
||||
HCoeffsType m_hCoeffs;
|
||||
@ -116,6 +147,22 @@ template<typename MatrixType> class HouseholderQR
|
||||
|
||||
#ifndef EIGEN_HIDE_HEAVY_CODE
|
||||
|
||||
template<typename MatrixType>
|
||||
typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "HouseholderQR is not initialized.");
|
||||
ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
|
||||
return ei_abs(m_qr.diagonal().prod());
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "HouseholderQR is not initialized.");
|
||||
ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
|
||||
return m_qr.diagonal().cwise().abs().cwise().log().sum();
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const MatrixType& matrix)
|
||||
{
|
||||
@ -177,7 +224,7 @@ void HouseholderQR<MatrixType>::solve(
|
||||
|
||||
/** \returns the matrix Q */
|
||||
template<typename MatrixType>
|
||||
MatrixType HouseholderQR<MatrixType>::matrixQ() const
|
||||
typename HouseholderQR<MatrixType>::MatrixQType HouseholderQR<MatrixType>::matrixQ() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "HouseholderQR is not initialized.");
|
||||
// compute the product H'_0 H'_1 ... H'_n-1,
|
||||
@ -185,13 +232,13 @@ MatrixType HouseholderQR<MatrixType>::matrixQ() const
|
||||
// and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
|
||||
int rows = m_qr.rows();
|
||||
int cols = m_qr.cols();
|
||||
MatrixType res = MatrixType::Identity(rows, cols);
|
||||
Matrix<Scalar,1,MatrixType::ColsAtCompileTime> temp(cols);
|
||||
for (int k = cols-1; k >= 0; k--)
|
||||
int size = std::min(rows,cols);
|
||||
MatrixQType res = MatrixQType::Identity(rows, rows);
|
||||
Matrix<Scalar,1,MatrixType::RowsAtCompileTime> temp(rows);
|
||||
for (int k = size-1; k >= 0; k--)
|
||||
{
|
||||
int remainingSize = rows-k;
|
||||
res.corner(BottomRight, remainingSize, cols-k)
|
||||
.applyHouseholderOnTheLeft(m_qr.col(k).end(remainingSize-1), ei_conj(m_hCoeffs.coeff(k)), &temp.coeffRef(k));
|
||||
res.block(k, k, rows-k, rows-k)
|
||||
.applyHouseholderOnTheLeft(m_qr.col(k).end(rows-k-1), ei_conj(m_hCoeffs.coeff(k)), &temp.coeffRef(k));
|
||||
}
|
||||
return res;
|
||||
}
|
25
test/qr.cpp
25
test/qr.cpp
@ -27,7 +27,6 @@
|
||||
|
||||
template<typename MatrixType> void qr(const MatrixType& m)
|
||||
{
|
||||
/* this test covers the following files: QR.h */
|
||||
int rows = m.rows();
|
||||
int cols = m.cols();
|
||||
|
||||
@ -37,8 +36,11 @@ template<typename MatrixType> void qr(const MatrixType& m)
|
||||
|
||||
MatrixType a = MatrixType::Random(rows,cols);
|
||||
HouseholderQR<MatrixType> qrOfA(a);
|
||||
VERIFY_IS_APPROX(a, qrOfA.matrixQ() * qrOfA.matrixR().toDense());
|
||||
VERIFY_IS_NOT_APPROX(a+MatrixType::Identity(rows, cols), qrOfA.matrixQ() * qrOfA.matrixR().toDense());
|
||||
MatrixType r = qrOfA.matrixQR();
|
||||
// FIXME need better way to construct trapezoid
|
||||
for(int i = 0; i < rows; i++) for(int j = 0; j < cols; j++) if(i>j) r(i,j) = Scalar(0);
|
||||
|
||||
VERIFY_IS_APPROX(a, qrOfA.matrixQ() * r);
|
||||
|
||||
SquareMatrixType b = a.adjoint() * a;
|
||||
|
||||
@ -57,8 +59,9 @@ template<typename MatrixType> void qr(const MatrixType& m)
|
||||
|
||||
template<typename MatrixType> void qr_invertible()
|
||||
{
|
||||
/* this test covers the following files: QR.h */
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
|
||||
int size = ei_random<int>(10,50);
|
||||
|
||||
MatrixType m1(size, size), m2(size, size), m3(size, size);
|
||||
@ -75,6 +78,16 @@ template<typename MatrixType> void qr_invertible()
|
||||
m3 = MatrixType::Random(size,size);
|
||||
qr.solve(m3, &m2);
|
||||
VERIFY_IS_APPROX(m3, m1*m2);
|
||||
|
||||
// now construct a matrix with prescribed determinant
|
||||
m1.setZero();
|
||||
for(int i = 0; i < size; i++) m1(i,i) = ei_random<Scalar>();
|
||||
RealScalar absdet = ei_abs(m1.diagonal().prod());
|
||||
m3 = qr.matrixQ(); // get a unitary
|
||||
m1 = m3 * m1 * m3;
|
||||
qr.compute(m1);
|
||||
VERIFY_IS_APPROX(absdet, qr.absDeterminant());
|
||||
VERIFY_IS_APPROX(ei_log(absdet), qr.logAbsDeterminant());
|
||||
}
|
||||
|
||||
template<typename MatrixType> void qr_verify_assert()
|
||||
@ -82,9 +95,11 @@ template<typename MatrixType> void qr_verify_assert()
|
||||
MatrixType tmp;
|
||||
|
||||
HouseholderQR<MatrixType> qr;
|
||||
VERIFY_RAISES_ASSERT(qr.matrixR())
|
||||
VERIFY_RAISES_ASSERT(qr.matrixQR())
|
||||
VERIFY_RAISES_ASSERT(qr.solve(tmp,&tmp))
|
||||
VERIFY_RAISES_ASSERT(qr.matrixQ())
|
||||
VERIFY_RAISES_ASSERT(qr.absDeterminant())
|
||||
VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
|
||||
}
|
||||
|
||||
void test_qr()
|
||||
|
@ -28,7 +28,6 @@
|
||||
|
||||
template<typename MatrixType> void qr()
|
||||
{
|
||||
/* this test covers the following files: QR.h */
|
||||
int rows = ei_random<int>(20,200), cols = ei_random<int>(20,200), cols2 = ei_random<int>(20,200);
|
||||
int rank = ei_random<int>(1, std::min(rows, cols)-1);
|
||||
|
||||
@ -39,6 +38,10 @@ template<typename MatrixType> void qr()
|
||||
createRandomMatrixOfRank(rank,rows,cols,m1);
|
||||
ColPivotingHouseholderQR<MatrixType> qr(m1);
|
||||
VERIFY_IS_APPROX(rank, qr.rank());
|
||||
VERIFY(cols - qr.rank() == qr.dimensionOfKernel());
|
||||
VERIFY(!qr.isInjective());
|
||||
VERIFY(!qr.isInvertible());
|
||||
VERIFY(!qr.isSurjective());
|
||||
|
||||
MatrixType r = qr.matrixQR();
|
||||
// FIXME need better way to construct trapezoid
|
||||
@ -54,14 +57,17 @@ template<typename MatrixType> void qr()
|
||||
MatrixType m2 = MatrixType::Random(cols,cols2);
|
||||
MatrixType m3 = m1*m2;
|
||||
m2 = MatrixType::Random(cols,cols2);
|
||||
qr.solve(m3, &m2);
|
||||
VERIFY(qr.solve(m3, &m2));
|
||||
VERIFY_IS_APPROX(m3, m1*m2);
|
||||
m3 = MatrixType::Random(rows,cols2);
|
||||
VERIFY(!qr.solve(m3, &m2));
|
||||
}
|
||||
|
||||
template<typename MatrixType> void qr_invertible()
|
||||
{
|
||||
/* this test covers the following files: RRQR.h */
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
|
||||
int size = ei_random<int>(10,50);
|
||||
|
||||
MatrixType m1(size, size), m2(size, size), m3(size, size);
|
||||
@ -78,6 +84,16 @@ template<typename MatrixType> void qr_invertible()
|
||||
m3 = MatrixType::Random(size,size);
|
||||
qr.solve(m3, &m2);
|
||||
VERIFY_IS_APPROX(m3, m1*m2);
|
||||
|
||||
// now construct a matrix with prescribed determinant
|
||||
m1.setZero();
|
||||
for(int i = 0; i < size; i++) m1(i,i) = ei_random<Scalar>();
|
||||
RealScalar absdet = ei_abs(m1.diagonal().prod());
|
||||
m3 = qr.matrixQ(); // get a unitary
|
||||
m1 = m3 * m1 * m3;
|
||||
qr.compute(m1);
|
||||
VERIFY_IS_APPROX(absdet, qr.absDeterminant());
|
||||
VERIFY_IS_APPROX(ei_log(absdet), qr.logAbsDeterminant());
|
||||
}
|
||||
|
||||
template<typename MatrixType> void qr_verify_assert()
|
||||
@ -85,9 +101,17 @@ template<typename MatrixType> void qr_verify_assert()
|
||||
MatrixType tmp;
|
||||
|
||||
ColPivotingHouseholderQR<MatrixType> qr;
|
||||
VERIFY_RAISES_ASSERT(qr.matrixR())
|
||||
VERIFY_RAISES_ASSERT(qr.matrixQR())
|
||||
VERIFY_RAISES_ASSERT(qr.solve(tmp,&tmp))
|
||||
VERIFY_RAISES_ASSERT(qr.matrixQ())
|
||||
VERIFY_RAISES_ASSERT(qr.dimensionOfKernel())
|
||||
VERIFY_RAISES_ASSERT(qr.isInjective())
|
||||
VERIFY_RAISES_ASSERT(qr.isSurjective())
|
||||
VERIFY_RAISES_ASSERT(qr.isInvertible())
|
||||
VERIFY_RAISES_ASSERT(qr.computeInverse(&tmp))
|
||||
VERIFY_RAISES_ASSERT(qr.inverse())
|
||||
VERIFY_RAISES_ASSERT(qr.absDeterminant())
|
||||
VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
|
||||
}
|
||||
|
||||
void test_qr_colpivoting()
|
||||
|
@ -28,7 +28,6 @@
|
||||
|
||||
template<typename MatrixType> void qr()
|
||||
{
|
||||
/* this test covers the following files: QR.h */
|
||||
int rows = ei_random<int>(20,200), cols = ei_random<int>(20,200), cols2 = ei_random<int>(20,200);
|
||||
int rank = ei_random<int>(1, std::min(rows, cols)-1);
|
||||
|
||||
@ -44,7 +43,6 @@ template<typename MatrixType> void qr()
|
||||
VERIFY(!qr.isInvertible());
|
||||
VERIFY(!qr.isSurjective());
|
||||
|
||||
|
||||
MatrixType r = qr.matrixQR();
|
||||
// FIXME need better way to construct trapezoid
|
||||
for(int i = 0; i < rows; i++) for(int j = 0; j < cols; j++) if(i>j) r(i,j) = Scalar(0);
|
||||
@ -99,6 +97,7 @@ template<typename MatrixType> void qr_invertible()
|
||||
m1 = m3 * m1 * m3;
|
||||
qr.compute(m1);
|
||||
VERIFY_IS_APPROX(absdet, qr.absDeterminant());
|
||||
VERIFY_IS_APPROX(ei_log(absdet), qr.logAbsDeterminant());
|
||||
}
|
||||
|
||||
template<typename MatrixType> void qr_verify_assert()
|
||||
@ -106,9 +105,17 @@ template<typename MatrixType> void qr_verify_assert()
|
||||
MatrixType tmp;
|
||||
|
||||
FullPivotingHouseholderQR<MatrixType> qr;
|
||||
VERIFY_RAISES_ASSERT(qr.matrixR())
|
||||
VERIFY_RAISES_ASSERT(qr.matrixQR())
|
||||
VERIFY_RAISES_ASSERT(qr.solve(tmp,&tmp))
|
||||
VERIFY_RAISES_ASSERT(qr.matrixQ())
|
||||
VERIFY_RAISES_ASSERT(qr.dimensionOfKernel())
|
||||
VERIFY_RAISES_ASSERT(qr.isInjective())
|
||||
VERIFY_RAISES_ASSERT(qr.isSurjective())
|
||||
VERIFY_RAISES_ASSERT(qr.isInvertible())
|
||||
VERIFY_RAISES_ASSERT(qr.computeInverse(&tmp))
|
||||
VERIFY_RAISES_ASSERT(qr.inverse())
|
||||
VERIFY_RAISES_ASSERT(qr.absDeterminant())
|
||||
VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
|
||||
}
|
||||
|
||||
void test_qr_fullpivoting()
|
||||
|
Loading…
Reference in New Issue
Block a user