merge with tip

This commit is contained in:
Thomas Capricelli 2009-08-25 23:49:48 +02:00
commit a1e9e8d082
15 changed files with 418 additions and 134 deletions

View File

@ -1,4 +1,4 @@
set(Eigen_HEADERS Core LU Cholesky QR Geometry Sparse Array SVD LeastSquares QtAlignedMalloc StdVector)
set(Eigen_HEADERS Core LU Cholesky QR Geometry Sparse Array SVD LeastSquares QtAlignedMalloc StdVector Householder Jacobi)
if(EIGEN_BUILD_LIB)
set(Eigen_SRCS

View File

@ -35,7 +35,7 @@ namespace Eigen {
* \endcode
*/
#include "src/QR/QR.h"
#include "src/QR/HouseholderQR.h"
#include "src/QR/FullPivotingHouseholderQR.h"
#include "src/QR/ColPivotingHouseholderQR.h"
#include "src/QR/Tridiagonalization.h"

View File

@ -43,38 +43,6 @@ Cwise<ExpressionType>::sqrt() const
return _expression();
}
/** \array_module
*
* \returns an expression of the coefficient-wise exponential of *this.
*
* Example: \include Cwise_exp.cpp
* Output: \verbinclude Cwise_exp.out
*
* \sa pow(), log(), sin(), cos()
*/
template<typename ExpressionType>
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_exp_op)
Cwise<ExpressionType>::exp() const
{
return _expression();
}
/** \array_module
*
* \returns an expression of the coefficient-wise logarithm of *this.
*
* Example: \include Cwise_log.cpp
* Output: \verbinclude Cwise_log.out
*
* \sa exp()
*/
template<typename ExpressionType>
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_log_op)
Cwise<ExpressionType>::log() const
{
return _expression();
}
/** \array_module
*
* \returns an expression of the coefficient-wise cosine of *this.

View File

@ -69,40 +69,6 @@ struct ei_functor_traits<ei_scalar_sqrt_op<Scalar> >
};
};
/** \internal
*
* \array_module
*
* \brief Template functor to compute the exponential of a scalar
*
* \sa class CwiseUnaryOp, Cwise::exp()
*/
template<typename Scalar> struct ei_scalar_exp_op EIGEN_EMPTY_STRUCT {
inline const Scalar operator() (const Scalar& a) const { return ei_exp(a); }
typedef typename ei_packet_traits<Scalar>::type Packet;
inline Packet packetOp(const Packet& a) const { return ei_pexp(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_exp_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::HasExp }; };
/** \internal
*
* \array_module
*
* \brief Template functor to compute the logarithm of a scalar
*
* \sa class CwiseUnaryOp, Cwise::log()
*/
template<typename Scalar> struct ei_scalar_log_op EIGEN_EMPTY_STRUCT {
inline const Scalar operator() (const Scalar& a) const { return ei_log(a); }
typedef typename ei_packet_traits<Scalar>::type Packet;
inline Packet packetOp(const Packet& a) const { return ei_plog(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_log_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::HasLog }; };
/** \internal
*
* \array_module

View File

@ -7,3 +7,5 @@ ADD_SUBDIRECTORY(Array)
ADD_SUBDIRECTORY(Geometry)
ADD_SUBDIRECTORY(LeastSquares)
ADD_SUBDIRECTORY(Sparse)
ADD_SUBDIRECTORY(Jacobi)
ADD_SUBDIRECTORY(Householder)

View File

@ -205,6 +205,35 @@ MatrixBase<Derived>::cast() const
return derived();
}
/** \returns an expression of the coefficient-wise exponential of *this.
*
* Example: \include Cwise_exp.cpp
* Output: \verbinclude Cwise_exp.out
*
* \sa pow(), log(), sin(), cos()
*/
template<typename ExpressionType>
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_exp_op)
Cwise<ExpressionType>::exp() const
{
return _expression();
}
/** \returns an expression of the coefficient-wise logarithm of *this.
*
* Example: \include Cwise_log.cpp
* Output: \verbinclude Cwise_log.out
*
* \sa exp()
*/
template<typename ExpressionType>
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_log_op)
Cwise<ExpressionType>::log() const
{
return _expression();
}
/** \relates MatrixBase */
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::ScalarMultipleReturnType

View File

@ -298,6 +298,36 @@ template<typename Scalar>
struct ei_functor_traits<ei_scalar_imag_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };
/** \internal
*
* \brief Template functor to compute the exponential of a scalar
*
* \sa class CwiseUnaryOp, Cwise::exp()
*/
template<typename Scalar> struct ei_scalar_exp_op EIGEN_EMPTY_STRUCT {
inline const Scalar operator() (const Scalar& a) const { return ei_exp(a); }
typedef typename ei_packet_traits<Scalar>::type Packet;
inline Packet packetOp(const Packet& a) const { return ei_pexp(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_exp_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::HasExp }; };
/** \internal
*
* \brief Template functor to compute the logarithm of a scalar
*
* \sa class CwiseUnaryOp, Cwise::log()
*/
template<typename Scalar> struct ei_scalar_log_op EIGEN_EMPTY_STRUCT {
inline const Scalar operator() (const Scalar& a) const { return ei_log(a); }
typedef typename ei_packet_traits<Scalar>::type Packet;
inline Packet packetOp(const Packet& a) const { return ei_plog(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_log_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::HasLog }; };
/** \internal
* \brief Template functor to multiply a scalar by a fixed other one
*

View File

@ -63,7 +63,7 @@ inline void MatrixBase<Derived>::applyJacobiOnTheRight(int p, int q, Scalar c, S
/** Computes the cosine-sine pair (\a c, \a s) such that its associated
* rotation \f$ J = ( \begin{array}{cc} c & s \\ -s' c \end{array} )\f$
* applied to both the right and left of the 2x2 matrix
* \f$ B = ( \begin{array}{cc} x & y \\ _ & z \end{array} )\f$ yields
* \f$ B = ( \begin{array}{cc} x & y \\ * & z \end{array} )\f$ yields
* a diagonal matrix A: \f$ A = J' B J \f$
*/
template<typename Scalar>
@ -149,7 +149,7 @@ void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY&
const Packet pc = ei_pset1(c);
const Packet ps = ei_pset1(s);
ei_conj_helper<true,false> cj;
ei_conj_helper<NumTraits<Scalar>::IsComplex,false> cj;
for(int i=0; i<alignedStart; ++i)
{

View File

@ -534,7 +534,16 @@ bool LU<MatrixType>::solve(
) const
{
ei_assert(m_originalMatrix != 0 && "LU is not initialized.");
if(m_rank==0) return false;
result->resize(m_lu.cols(), b.cols());
if(m_rank==0)
{
if(b.squaredNorm() == RealScalar(0))
{
result->setZero();
return true;
}
else return false;
}
/* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
* So we proceed as follows:
@ -577,7 +586,6 @@ bool LU<MatrixType>::solve(
.solveInPlace(c.corner(TopLeft, m_rank, c.cols()));
// Step 4
result->resize(m_lu.cols(), b.cols());
for(int i = 0; i < m_rank; ++i) result->row(m_q.coeff(i)) = c.row(i);
for(int i = m_rank; i < m_lu.cols(); ++i) result->row(m_q.coeff(i)).setZero();
return true;

View File

@ -31,14 +31,14 @@
*
* \class ColPivotingHouseholderQR
*
* \brief Householder rank-revealing QR decomposition of a matrix
* \brief Householder rank-revealing QR decomposition of a matrix with column-pivoting
*
* \param MatrixType the type of the matrix of which we are computing the QR decomposition
*
* This class performs a rank-revealing QR decomposition using Householder transformations.
*
* This decomposition performs full-pivoting in order to be rank-revealing and achieve optimal
* numerical stability.
* This decomposition performs column pivoting in order to be rank-revealing and improve
* numerical stability. It is slower than HouseholderQR, and faster than FullPivotingHouseholderQR.
*
* \sa MatrixBase::colPivotingHouseholderQr()
*/
@ -82,6 +82,8 @@ template<typename MatrixType> class ColPivotingHouseholderQR
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
* *this is the QR decomposition, if any exists.
*
* \returns \c true if a solution exists, \c false if no solution exists.
*
* \param b the right-hand-side of the equation to solve.
*
* \param result a pointer to the vector/matrix in which to store the solution, if any exists.
@ -95,13 +97,17 @@ template<typename MatrixType> class ColPivotingHouseholderQR
* Output: \verbinclude ColPivotingHouseholderQR_solve.out
*/
template<typename OtherDerived, typename ResultType>
void solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
MatrixType matrixQ(void) const;
MatrixQType matrixQ(void) const;
/** \returns a reference to the matrix where the Householder QR decomposition is stored
*/
const MatrixType& matrixQR() const { return m_qr; }
const MatrixType& matrixQR() const
{
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
return m_qr;
}
ColPivotingHouseholderQR& compute(const MatrixType& matrix);
@ -111,12 +117,122 @@ template<typename MatrixType> class ColPivotingHouseholderQR
return m_cols_permutation;
}
/** \returns the absolute value of the determinant of the matrix of which
* *this is the QR decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the QR decomposition has already been computed.
*
* \note This is only for square matrices.
*
* \warning a determinant can be very big or small, so for matrices
* of large enough dimension, there is a risk of overflow/underflow.
* One way to work around that is to use logAbsDeterminant() instead.
*
* \sa logAbsDeterminant(), MatrixBase::determinant()
*/
typename MatrixType::RealScalar absDeterminant() const;
/** \returns the natural log of the absolute value of the determinant of the matrix of which
* *this is the QR decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the QR decomposition has already been computed.
*
* \note This is only for square matrices.
*
* \note This method is useful to work around the risk of overflow/underflow that's inherent
* to determinant computation.
*
* \sa absDeterminant(), MatrixBase::determinant()
*/
typename MatrixType::RealScalar logAbsDeterminant() const;
/** \returns the rank of the matrix of which *this is the QR decomposition.
*
* \note This is computed at the time of the construction of the QR decomposition. This
* method does not perform any further computation.
*/
inline int rank() const
{
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
return m_rank;
}
/** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
*
* \note Since the rank is computed at the time of the construction of the QR decomposition, this
* method almost does not perform any further computation.
*/
inline int dimensionOfKernel() const
{
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
return m_qr.cols() - m_rank;
}
/** \returns true if the matrix of which *this is the QR decomposition represents an injective
* linear map, i.e. has trivial kernel; false otherwise.
*
* \note Since the rank is computed at the time of the construction of the QR decomposition, this
* method almost does not perform any further computation.
*/
inline bool isInjective() const
{
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
return m_rank == m_qr.cols();
}
/** \returns true if the matrix of which *this is the QR decomposition represents a surjective
* linear map; false otherwise.
*
* \note Since the rank is computed at the time of the construction of the QR decomposition, this
* method almost does not perform any further computation.
*/
inline bool isSurjective() const
{
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
return m_rank == m_qr.rows();
}
/** \returns true if the matrix of which *this is the QR decomposition is invertible.
*
* \note Since the rank is computed at the time of the construction of the QR decomposition, this
* method almost does not perform any further computation.
*/
inline bool isInvertible() const
{
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
return isInjective() && isSurjective();
}
/** Computes the inverse of the matrix of which *this is the QR decomposition.
*
* \param result a pointer to the matrix into which to store the inverse. Resized if needed.
*
* \note If this matrix is not invertible, *result is left with undefined coefficients.
* Use isInvertible() to first determine whether this matrix is invertible.
*
* \sa inverse()
*/
inline void computeInverse(MatrixType *result) const
{
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the inverse of a non-square matrix!");
solve(MatrixType::Identity(m_qr.rows(), m_qr.cols()), result);
}
/** \returns the inverse of the matrix of which *this is the QR decomposition.
*
* \note If this matrix is not invertible, the returned matrix has undefined coefficients.
* Use isInvertible() to first determine whether this matrix is invertible.
*
* \sa computeInverse()
*/
inline MatrixType inverse() const
{
MatrixType result;
computeInverse(&result);
return result;
}
protected:
MatrixType m_qr;
HCoeffsType m_hCoeffs;
@ -129,6 +245,22 @@ template<typename MatrixType> class ColPivotingHouseholderQR
#ifndef EIGEN_HIDE_HEAVY_CODE
template<typename MatrixType>
typename MatrixType::RealScalar ColPivotingHouseholderQR<MatrixType>::absDeterminant() const
{
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
return ei_abs(m_qr.diagonal().prod());
}
template<typename MatrixType>
typename MatrixType::RealScalar ColPivotingHouseholderQR<MatrixType>::logAbsDeterminant() const
{
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
return m_qr.diagonal().cwise().abs().cwise().log().sum();
}
template<typename MatrixType>
ColPivotingHouseholderQR<MatrixType>& ColPivotingHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
{
@ -199,12 +331,23 @@ ColPivotingHouseholderQR<MatrixType>& ColPivotingHouseholderQR<MatrixType>::comp
template<typename MatrixType>
template<typename OtherDerived, typename ResultType>
void ColPivotingHouseholderQR<MatrixType>::solve(
bool ColPivotingHouseholderQR<MatrixType>::solve(
const MatrixBase<OtherDerived>& b,
ResultType *result
) const
{
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
result->resize(m_qr.cols(), b.cols());
if(m_rank==0)
{
if(b.squaredNorm() == RealScalar(0))
{
result->setZero();
return true;
}
else return false;
}
const int rows = m_qr.rows();
const int cols = b.cols();
ei_assert(b.rows() == rows);
@ -219,18 +362,27 @@ void ColPivotingHouseholderQR<MatrixType>::solve(
.applyHouseholderOnTheLeft(m_qr.col(k).end(remainingSize-1), m_hCoeffs.coeff(k), &temp.coeffRef(0));
}
if(!isSurjective())
{
// is c is in the image of R ?
RealScalar biggest_in_upper_part_of_c = c.corner(TopLeft, m_rank, c.cols()).cwise().abs().maxCoeff();
RealScalar biggest_in_lower_part_of_c = c.corner(BottomLeft, rows-m_rank, c.cols()).cwise().abs().maxCoeff();
if(!ei_isMuchSmallerThan(biggest_in_lower_part_of_c, biggest_in_upper_part_of_c, m_precision*4))
return false;
}
m_qr.corner(TopLeft, m_rank, m_rank)
.template triangularView<UpperTriangular>()
.solveInPlace(c.corner(TopLeft, m_rank, c.cols()));
result->resize(m_qr.cols(), b.cols());
for(int i = 0; i < m_rank; ++i) result->row(m_cols_permutation.coeff(i)) = c.row(i);
for(int i = m_rank; i < m_qr.cols(); ++i) result->row(m_cols_permutation.coeff(i)).setZero();
return true;
}
/** \returns the matrix Q */
template<typename MatrixType>
MatrixType ColPivotingHouseholderQR<MatrixType>::matrixQ() const
typename ColPivotingHouseholderQR<MatrixType>::MatrixQType ColPivotingHouseholderQR<MatrixType>::matrixQ() const
{
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
// compute the product H'_0 H'_1 ... H'_n-1,
@ -239,7 +391,7 @@ MatrixType ColPivotingHouseholderQR<MatrixType>::matrixQ() const
int rows = m_qr.rows();
int cols = m_qr.cols();
int size = std::min(rows,cols);
MatrixType res = MatrixType::Identity(rows, rows);
MatrixQType res = MatrixQType::Identity(rows, rows);
Matrix<Scalar,1,MatrixType::RowsAtCompileTime> temp(rows);
for (int k = size-1; k >= 0; k--)
{

View File

@ -31,16 +31,16 @@
*
* \class FullPivotingHouseholderQR
*
* \brief Householder rank-revealing QR decomposition of a matrix
* \brief Householder rank-revealing QR decomposition of a matrix with full pivoting
*
* \param MatrixType the type of the matrix of which we are computing the QR decomposition
*
* This class performs a rank-revealing QR decomposition using Householder transformations.
*
* This decomposition performs full-pivoting in order to be rank-revealing and achieve optimal
* numerical stability.
* This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal
* numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivotingHouseholderQR.
*
* \sa MatrixBase::householderRrqr()
* \sa MatrixBase::fullPivotingHouseholderQr()
*/
template<typename MatrixType> class FullPivotingHouseholderQR
{
@ -62,12 +62,11 @@ template<typename MatrixType> class FullPivotingHouseholderQR
typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType;
typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType;
/**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via FullPivotingHouseholderQR::compute(const MatrixType&).
*/
/** \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via FullPivotingHouseholderQR::compute(const MatrixType&).
*/
FullPivotingHouseholderQR() : m_qr(), m_hCoeffs(), m_isInitialized(false) {}
FullPivotingHouseholderQR(const MatrixType& matrix)
@ -81,6 +80,8 @@ template<typename MatrixType> class FullPivotingHouseholderQR
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
* *this is the QR decomposition, if any exists.
*
* \returns \c true if a solution exists, \c false if no solution exists.
*
* \param b the right-hand-side of the equation to solve.
*
* \param result a pointer to the vector/matrix in which to store the solution, if any exists.
@ -96,11 +97,15 @@ template<typename MatrixType> class FullPivotingHouseholderQR
template<typename OtherDerived, typename ResultType>
bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
MatrixType matrixQ(void) const;
MatrixQType matrixQ(void) const;
/** \returns a reference to the matrix where the Householder QR decomposition is stored
*/
const MatrixType& matrixQR() const { return m_qr; }
const MatrixType& matrixQR() const
{
ei_assert(m_isInitialized && "FullPivotingHouseholderQR is not initialized.");
return m_qr;
}
FullPivotingHouseholderQR& compute(const MatrixType& matrix);
@ -125,11 +130,26 @@ template<typename MatrixType> class FullPivotingHouseholderQR
*
* \warning a determinant can be very big or small, so for matrices
* of large enough dimension, there is a risk of overflow/underflow.
* One way to work around that is to use logAbsDeterminant() instead.
*
* \sa MatrixBase::determinant()
* \sa logAbsDeterminant(), MatrixBase::determinant()
*/
typename MatrixType::RealScalar absDeterminant() const;
/** \returns the natural log of the absolute value of the determinant of the matrix of which
* *this is the QR decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the QR decomposition has already been computed.
*
* \note This is only for square matrices.
*
* \note This method is useful to work around the risk of overflow/underflow that's inherent
* to determinant computation.
*
* \sa absDeterminant(), MatrixBase::determinant()
*/
typename MatrixType::RealScalar logAbsDeterminant() const;
/** \returns the rank of the matrix of which *this is the QR decomposition.
*
* \note This is computed at the time of the construction of the QR decomposition. This
@ -238,6 +258,14 @@ typename MatrixType::RealScalar FullPivotingHouseholderQR<MatrixType>::absDeterm
return ei_abs(m_qr.diagonal().prod());
}
template<typename MatrixType>
typename MatrixType::RealScalar FullPivotingHouseholderQR<MatrixType>::logAbsDeterminant() const
{
ei_assert(m_isInitialized && "FullPivotingHouseholderQR is not initialized.");
ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
return m_qr.diagonal().cwise().abs().cwise().log().sum();
}
template<typename MatrixType>
FullPivotingHouseholderQR<MatrixType>& FullPivotingHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
{
@ -322,7 +350,16 @@ bool FullPivotingHouseholderQR<MatrixType>::solve(
) const
{
ei_assert(m_isInitialized && "FullPivotingHouseholderQR is not initialized.");
if(m_rank==0) return false;
result->resize(m_qr.cols(), b.cols());
if(m_rank==0)
{
if(b.squaredNorm() == RealScalar(0))
{
result->setZero();
return true;
}
else return false;
}
const int rows = m_qr.rows();
const int cols = b.cols();
@ -351,7 +388,6 @@ bool FullPivotingHouseholderQR<MatrixType>::solve(
.template triangularView<UpperTriangular>()
.solveInPlace(c.corner(TopLeft, m_rank, c.cols()));
result->resize(m_qr.cols(), b.cols());
for(int i = 0; i < m_rank; ++i) result->row(m_cols_permutation.coeff(i)) = c.row(i);
for(int i = m_rank; i < m_qr.cols(); ++i) result->row(m_cols_permutation.coeff(i)).setZero();
return true;
@ -359,7 +395,7 @@ bool FullPivotingHouseholderQR<MatrixType>::solve(
/** \returns the matrix Q */
template<typename MatrixType>
MatrixType FullPivotingHouseholderQR<MatrixType>::matrixQ() const
typename FullPivotingHouseholderQR<MatrixType>::MatrixQType FullPivotingHouseholderQR<MatrixType>::matrixQ() const
{
ei_assert(m_isInitialized && "FullPivotingHouseholderQR is not initialized.");
// compute the product H'_0 H'_1 ... H'_n-1,
@ -368,7 +404,7 @@ MatrixType FullPivotingHouseholderQR<MatrixType>::matrixQ() const
int rows = m_qr.rows();
int cols = m_qr.cols();
int size = std::min(rows,cols);
MatrixType res = MatrixType::Identity(rows, rows);
MatrixQType res = MatrixQType::Identity(rows, rows);
Matrix<Scalar,1,MatrixType::RowsAtCompileTime> temp(rows);
for (int k = size-1; k >= 0; k--)
{

View File

@ -2,6 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
@ -38,6 +39,10 @@
* stored in a compact way compatible with LAPACK.
*
* Note that no pivoting is performed. This is \b not a rank-revealing decomposition.
* If you want that feature, use FullPivotingHouseholderQR or ColPivotingHouseholderQR instead.
*
* This Householder QR decomposition is faster, but less numerically stable and less feature-full than
* FullPivotingHouseholderQR or ColPivotingHouseholderQR.
*
* \sa MatrixBase::householderQr()
*/
@ -46,15 +51,17 @@ template<typename MatrixType> class HouseholderQR
public:
enum {
MinSizeAtCompileTime = EIGEN_ENUM_MIN(MatrixType::ColsAtCompileTime,MatrixType::RowsAtCompileTime)
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
DiagSizeAtCompileTime = EIGEN_ENUM_MIN(ColsAtCompileTime,RowsAtCompileTime)
};
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef Block<MatrixType, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixRBlockType;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixTypeR;
typedef Matrix<Scalar, MinSizeAtCompileTime, 1> HCoeffsType;
typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixQType;
typedef Matrix<Scalar, DiagSizeAtCompileTime, 1> HCoeffsType;
typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType;
/**
* \brief Default Constructor.
@ -72,15 +79,6 @@ template<typename MatrixType> class HouseholderQR
compute(matrix);
}
/** \returns a read-only expression of the matrix R of the actual the QR decomposition */
const TriangularView<NestByValue<MatrixRBlockType>, UpperTriangular>
matrixR(void) const
{
ei_assert(m_isInitialized && "HouseholderQR is not initialized.");
int cols = m_qr.cols();
return MatrixRBlockType(m_qr, 0, 0, cols, cols).nestByValue().template triangularView<UpperTriangular>();
}
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
* *this is the QR decomposition, if any exists.
*
@ -99,15 +97,48 @@ template<typename MatrixType> class HouseholderQR
template<typename OtherDerived, typename ResultType>
void solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
MatrixType matrixQ(void) const;
MatrixQType matrixQ(void) const;
/** \returns a reference to the matrix where the Householder QR decomposition is stored
* in a LAPACK-compatible way.
*/
const MatrixType& matrixQR() const { return m_qr; }
const MatrixType& matrixQR() const
{
ei_assert(m_isInitialized && "HouseholderQR is not initialized.");
return m_qr;
}
HouseholderQR& compute(const MatrixType& matrix);
/** \returns the absolute value of the determinant of the matrix of which
* *this is the QR decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the QR decomposition has already been computed.
*
* \note This is only for square matrices.
*
* \warning a determinant can be very big or small, so for matrices
* of large enough dimension, there is a risk of overflow/underflow.
* One way to work around that is to use logAbsDeterminant() instead.
*
* \sa logAbsDeterminant(), MatrixBase::determinant()
*/
typename MatrixType::RealScalar absDeterminant() const;
/** \returns the natural log of the absolute value of the determinant of the matrix of which
* *this is the QR decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the QR decomposition has already been computed.
*
* \note This is only for square matrices.
*
* \note This method is useful to work around the risk of overflow/underflow that's inherent
* to determinant computation.
*
* \sa absDeterminant(), MatrixBase::determinant()
*/
typename MatrixType::RealScalar logAbsDeterminant() const;
protected:
MatrixType m_qr;
HCoeffsType m_hCoeffs;
@ -116,6 +147,22 @@ template<typename MatrixType> class HouseholderQR
#ifndef EIGEN_HIDE_HEAVY_CODE
template<typename MatrixType>
typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const
{
ei_assert(m_isInitialized && "HouseholderQR is not initialized.");
ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
return ei_abs(m_qr.diagonal().prod());
}
template<typename MatrixType>
typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const
{
ei_assert(m_isInitialized && "HouseholderQR is not initialized.");
ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
return m_qr.diagonal().cwise().abs().cwise().log().sum();
}
template<typename MatrixType>
HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const MatrixType& matrix)
{
@ -177,7 +224,7 @@ void HouseholderQR<MatrixType>::solve(
/** \returns the matrix Q */
template<typename MatrixType>
MatrixType HouseholderQR<MatrixType>::matrixQ() const
typename HouseholderQR<MatrixType>::MatrixQType HouseholderQR<MatrixType>::matrixQ() const
{
ei_assert(m_isInitialized && "HouseholderQR is not initialized.");
// compute the product H'_0 H'_1 ... H'_n-1,
@ -185,13 +232,13 @@ MatrixType HouseholderQR<MatrixType>::matrixQ() const
// and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
int rows = m_qr.rows();
int cols = m_qr.cols();
MatrixType res = MatrixType::Identity(rows, cols);
Matrix<Scalar,1,MatrixType::ColsAtCompileTime> temp(cols);
for (int k = cols-1; k >= 0; k--)
int size = std::min(rows,cols);
MatrixQType res = MatrixQType::Identity(rows, rows);
Matrix<Scalar,1,MatrixType::RowsAtCompileTime> temp(rows);
for (int k = size-1; k >= 0; k--)
{
int remainingSize = rows-k;
res.corner(BottomRight, remainingSize, cols-k)
.applyHouseholderOnTheLeft(m_qr.col(k).end(remainingSize-1), ei_conj(m_hCoeffs.coeff(k)), &temp.coeffRef(k));
res.block(k, k, rows-k, rows-k)
.applyHouseholderOnTheLeft(m_qr.col(k).end(rows-k-1), ei_conj(m_hCoeffs.coeff(k)), &temp.coeffRef(k));
}
return res;
}

View File

@ -27,7 +27,6 @@
template<typename MatrixType> void qr(const MatrixType& m)
{
/* this test covers the following files: QR.h */
int rows = m.rows();
int cols = m.cols();
@ -37,8 +36,11 @@ template<typename MatrixType> void qr(const MatrixType& m)
MatrixType a = MatrixType::Random(rows,cols);
HouseholderQR<MatrixType> qrOfA(a);
VERIFY_IS_APPROX(a, qrOfA.matrixQ() * qrOfA.matrixR().toDense());
VERIFY_IS_NOT_APPROX(a+MatrixType::Identity(rows, cols), qrOfA.matrixQ() * qrOfA.matrixR().toDense());
MatrixType r = qrOfA.matrixQR();
// FIXME need better way to construct trapezoid
for(int i = 0; i < rows; i++) for(int j = 0; j < cols; j++) if(i>j) r(i,j) = Scalar(0);
VERIFY_IS_APPROX(a, qrOfA.matrixQ() * r);
SquareMatrixType b = a.adjoint() * a;
@ -57,8 +59,9 @@ template<typename MatrixType> void qr(const MatrixType& m)
template<typename MatrixType> void qr_invertible()
{
/* this test covers the following files: QR.h */
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef typename MatrixType::Scalar Scalar;
int size = ei_random<int>(10,50);
MatrixType m1(size, size), m2(size, size), m3(size, size);
@ -75,6 +78,16 @@ template<typename MatrixType> void qr_invertible()
m3 = MatrixType::Random(size,size);
qr.solve(m3, &m2);
VERIFY_IS_APPROX(m3, m1*m2);
// now construct a matrix with prescribed determinant
m1.setZero();
for(int i = 0; i < size; i++) m1(i,i) = ei_random<Scalar>();
RealScalar absdet = ei_abs(m1.diagonal().prod());
m3 = qr.matrixQ(); // get a unitary
m1 = m3 * m1 * m3;
qr.compute(m1);
VERIFY_IS_APPROX(absdet, qr.absDeterminant());
VERIFY_IS_APPROX(ei_log(absdet), qr.logAbsDeterminant());
}
template<typename MatrixType> void qr_verify_assert()
@ -82,9 +95,11 @@ template<typename MatrixType> void qr_verify_assert()
MatrixType tmp;
HouseholderQR<MatrixType> qr;
VERIFY_RAISES_ASSERT(qr.matrixR())
VERIFY_RAISES_ASSERT(qr.matrixQR())
VERIFY_RAISES_ASSERT(qr.solve(tmp,&tmp))
VERIFY_RAISES_ASSERT(qr.matrixQ())
VERIFY_RAISES_ASSERT(qr.absDeterminant())
VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
}
void test_qr()

View File

@ -28,7 +28,6 @@
template<typename MatrixType> void qr()
{
/* this test covers the following files: QR.h */
int rows = ei_random<int>(20,200), cols = ei_random<int>(20,200), cols2 = ei_random<int>(20,200);
int rank = ei_random<int>(1, std::min(rows, cols)-1);
@ -39,6 +38,10 @@ template<typename MatrixType> void qr()
createRandomMatrixOfRank(rank,rows,cols,m1);
ColPivotingHouseholderQR<MatrixType> qr(m1);
VERIFY_IS_APPROX(rank, qr.rank());
VERIFY(cols - qr.rank() == qr.dimensionOfKernel());
VERIFY(!qr.isInjective());
VERIFY(!qr.isInvertible());
VERIFY(!qr.isSurjective());
MatrixType r = qr.matrixQR();
// FIXME need better way to construct trapezoid
@ -54,14 +57,17 @@ template<typename MatrixType> void qr()
MatrixType m2 = MatrixType::Random(cols,cols2);
MatrixType m3 = m1*m2;
m2 = MatrixType::Random(cols,cols2);
qr.solve(m3, &m2);
VERIFY(qr.solve(m3, &m2));
VERIFY_IS_APPROX(m3, m1*m2);
m3 = MatrixType::Random(rows,cols2);
VERIFY(!qr.solve(m3, &m2));
}
template<typename MatrixType> void qr_invertible()
{
/* this test covers the following files: RRQR.h */
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef typename MatrixType::Scalar Scalar;
int size = ei_random<int>(10,50);
MatrixType m1(size, size), m2(size, size), m3(size, size);
@ -78,6 +84,16 @@ template<typename MatrixType> void qr_invertible()
m3 = MatrixType::Random(size,size);
qr.solve(m3, &m2);
VERIFY_IS_APPROX(m3, m1*m2);
// now construct a matrix with prescribed determinant
m1.setZero();
for(int i = 0; i < size; i++) m1(i,i) = ei_random<Scalar>();
RealScalar absdet = ei_abs(m1.diagonal().prod());
m3 = qr.matrixQ(); // get a unitary
m1 = m3 * m1 * m3;
qr.compute(m1);
VERIFY_IS_APPROX(absdet, qr.absDeterminant());
VERIFY_IS_APPROX(ei_log(absdet), qr.logAbsDeterminant());
}
template<typename MatrixType> void qr_verify_assert()
@ -85,9 +101,17 @@ template<typename MatrixType> void qr_verify_assert()
MatrixType tmp;
ColPivotingHouseholderQR<MatrixType> qr;
VERIFY_RAISES_ASSERT(qr.matrixR())
VERIFY_RAISES_ASSERT(qr.matrixQR())
VERIFY_RAISES_ASSERT(qr.solve(tmp,&tmp))
VERIFY_RAISES_ASSERT(qr.matrixQ())
VERIFY_RAISES_ASSERT(qr.dimensionOfKernel())
VERIFY_RAISES_ASSERT(qr.isInjective())
VERIFY_RAISES_ASSERT(qr.isSurjective())
VERIFY_RAISES_ASSERT(qr.isInvertible())
VERIFY_RAISES_ASSERT(qr.computeInverse(&tmp))
VERIFY_RAISES_ASSERT(qr.inverse())
VERIFY_RAISES_ASSERT(qr.absDeterminant())
VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
}
void test_qr_colpivoting()

View File

@ -28,7 +28,6 @@
template<typename MatrixType> void qr()
{
/* this test covers the following files: QR.h */
int rows = ei_random<int>(20,200), cols = ei_random<int>(20,200), cols2 = ei_random<int>(20,200);
int rank = ei_random<int>(1, std::min(rows, cols)-1);
@ -44,7 +43,6 @@ template<typename MatrixType> void qr()
VERIFY(!qr.isInvertible());
VERIFY(!qr.isSurjective());
MatrixType r = qr.matrixQR();
// FIXME need better way to construct trapezoid
for(int i = 0; i < rows; i++) for(int j = 0; j < cols; j++) if(i>j) r(i,j) = Scalar(0);
@ -99,6 +97,7 @@ template<typename MatrixType> void qr_invertible()
m1 = m3 * m1 * m3;
qr.compute(m1);
VERIFY_IS_APPROX(absdet, qr.absDeterminant());
VERIFY_IS_APPROX(ei_log(absdet), qr.logAbsDeterminant());
}
template<typename MatrixType> void qr_verify_assert()
@ -106,9 +105,17 @@ template<typename MatrixType> void qr_verify_assert()
MatrixType tmp;
FullPivotingHouseholderQR<MatrixType> qr;
VERIFY_RAISES_ASSERT(qr.matrixR())
VERIFY_RAISES_ASSERT(qr.matrixQR())
VERIFY_RAISES_ASSERT(qr.solve(tmp,&tmp))
VERIFY_RAISES_ASSERT(qr.matrixQ())
VERIFY_RAISES_ASSERT(qr.dimensionOfKernel())
VERIFY_RAISES_ASSERT(qr.isInjective())
VERIFY_RAISES_ASSERT(qr.isSurjective())
VERIFY_RAISES_ASSERT(qr.isInvertible())
VERIFY_RAISES_ASSERT(qr.computeInverse(&tmp))
VERIFY_RAISES_ASSERT(qr.inverse())
VERIFY_RAISES_ASSERT(qr.absDeterminant())
VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
}
void test_qr_fullpivoting()