mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-02-17 18:09:55 +08:00
Add tests for real and complex Schur; extend test for Hessenberg.
Make a minor correction to the ComplexSchur class.
This commit is contained in:
parent
3a14a13533
commit
a16a36ecf2
@ -86,7 +86,7 @@ template<typename _MatrixType> class ComplexSchur
|
||||
|
||||
/** \brief Default constructor.
|
||||
*
|
||||
* \param [in] size The size of the matrix whose Schur decomposition will be computed.
|
||||
* \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed.
|
||||
*
|
||||
* The default constructor is useful in cases in which the user
|
||||
* intends to perform decompositions via compute(). The \p size
|
||||
@ -95,7 +95,7 @@ template<typename _MatrixType> class ComplexSchur
|
||||
*
|
||||
* \sa compute() for an example.
|
||||
*/
|
||||
ComplexSchur(int size = RowsAtCompileTime==Dynamic ? 0 : RowsAtCompileTime)
|
||||
ComplexSchur(int size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
|
||||
: m_matT(size,size), m_matU(size,size), m_isInitialized(false), m_matUisUptodate(false)
|
||||
{}
|
||||
|
||||
@ -157,7 +157,7 @@ template<typename _MatrixType> class ComplexSchur
|
||||
*/
|
||||
const ComplexMatrixType& matrixT() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ComplexShur is not initialized.");
|
||||
ei_assert(m_isInitialized && "ComplexSchur is not initialized.");
|
||||
return m_matT;
|
||||
}
|
||||
|
||||
|
@ -138,7 +138,9 @@ ei_add_test(qr)
|
||||
ei_add_test(qr_colpivoting)
|
||||
ei_add_test(qr_fullpivoting)
|
||||
ei_add_test(upperbidiagonalization)
|
||||
ei_add_test(hessenberg " " "${GSL_LIBRARIES}")
|
||||
ei_add_test(hessenberg)
|
||||
ei_add_test(schur_real)
|
||||
ei_add_test(schur_complex)
|
||||
ei_add_test(eigensolver_selfadjoint " " "${GSL_LIBRARIES}")
|
||||
ei_add_test(eigensolver_generic " " "${GSL_LIBRARIES}")
|
||||
ei_add_test(eigensolver_complex)
|
||||
|
@ -2,6 +2,7 @@
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
@ -28,19 +29,36 @@
|
||||
template<typename Scalar,int Size> void hessenberg(int size = Size)
|
||||
{
|
||||
typedef Matrix<Scalar,Size,Size> MatrixType;
|
||||
MatrixType m = MatrixType::Random(size,size);
|
||||
HessenbergDecomposition<MatrixType> hess(m);
|
||||
|
||||
VERIFY_IS_APPROX(m, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
|
||||
// Test basic functionality: A = U H U* and H is Hessenberg
|
||||
for(int counter = 0; counter < g_repeat; ++counter) {
|
||||
MatrixType m = MatrixType::Random(size,size);
|
||||
HessenbergDecomposition<MatrixType> hess(m);
|
||||
VERIFY_IS_APPROX(m, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
|
||||
MatrixType H = hess.matrixH();
|
||||
for(int row = 2; row < size; ++row) {
|
||||
for(int col = 0; col < row-1; ++col) {
|
||||
VERIFY(H(row,col) == (typename MatrixType::Scalar)0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Test whether compute() and constructor returns same result
|
||||
MatrixType A = MatrixType::Random(size, size);
|
||||
HessenbergDecomposition<MatrixType> cs1;
|
||||
cs1.compute(A);
|
||||
HessenbergDecomposition<MatrixType> cs2(A);
|
||||
VERIFY_IS_EQUAL(cs1.matrixQ(), cs2.matrixQ());
|
||||
VERIFY_IS_EQUAL(cs1.matrixH(), cs2.matrixH());
|
||||
|
||||
// TODO: Add tests for packedMatrix() and householderCoefficients()
|
||||
}
|
||||
|
||||
void test_hessenberg()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST_1(( hessenberg<std::complex<double>,1>() ));
|
||||
CALL_SUBTEST_2(( hessenberg<std::complex<double>,2>() ));
|
||||
CALL_SUBTEST_3(( hessenberg<std::complex<float>,4>() ));
|
||||
CALL_SUBTEST_4(( hessenberg<float,Dynamic>(ei_random<int>(1,320)) ));
|
||||
CALL_SUBTEST_5(( hessenberg<std::complex<double>,Dynamic>(ei_random<int>(1,320)) ));
|
||||
}
|
||||
CALL_SUBTEST_1(( hessenberg<std::complex<double>,1>() ));
|
||||
CALL_SUBTEST_2(( hessenberg<std::complex<double>,2>() ));
|
||||
CALL_SUBTEST_3(( hessenberg<std::complex<float>,4>() ));
|
||||
CALL_SUBTEST_4(( hessenberg<float,Dynamic>(ei_random<int>(1,320)) ));
|
||||
CALL_SUBTEST_5(( hessenberg<std::complex<double>,Dynamic>(ei_random<int>(1,320)) ));
|
||||
}
|
||||
|
67
test/schur_complex.cpp
Normal file
67
test/schur_complex.cpp
Normal file
@ -0,0 +1,67 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "main.h"
|
||||
#include <Eigen/Eigenvalues>
|
||||
|
||||
template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTime)
|
||||
{
|
||||
typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
|
||||
typedef typename ComplexSchur<MatrixType>::ComplexMatrixType ComplexMatrixType;
|
||||
|
||||
// Test basic functionality: T is triangular and A = U T U*
|
||||
for(int counter = 0; counter < g_repeat; ++counter) {
|
||||
MatrixType A = MatrixType::Random(size, size);
|
||||
ComplexSchur<MatrixType> schurOfA(A);
|
||||
ComplexMatrixType U = schurOfA.matrixU();
|
||||
ComplexMatrixType T = schurOfA.matrixT();
|
||||
for(int row = 1; row < size; ++row) {
|
||||
for(int col = 0; col < row; ++col) {
|
||||
VERIFY(T(row,col) == (typename MatrixType::Scalar)0);
|
||||
}
|
||||
}
|
||||
VERIFY_IS_APPROX(A.template cast<ComplexScalar>(), U * T * U.adjoint());
|
||||
}
|
||||
|
||||
// Test asserts when not initialized
|
||||
ComplexSchur<MatrixType> csUninitialized;
|
||||
VERIFY_RAISES_ASSERT(csUninitialized.matrixT());
|
||||
VERIFY_RAISES_ASSERT(csUninitialized.matrixU());
|
||||
|
||||
// Test whether compute() and constructor returns same result
|
||||
MatrixType A = MatrixType::Random(size, size);
|
||||
ComplexSchur<MatrixType> cs1;
|
||||
cs1.compute(A);
|
||||
ComplexSchur<MatrixType> cs2(A);
|
||||
VERIFY_IS_EQUAL(cs1.matrixT(), cs2.matrixT());
|
||||
VERIFY_IS_EQUAL(cs1.matrixU(), cs2.matrixU());
|
||||
}
|
||||
|
||||
void test_schur_complex()
|
||||
{
|
||||
CALL_SUBTEST_1(( schur<Matrix4cd>() ));
|
||||
CALL_SUBTEST_2(( schur<MatrixXcf>(ei_random<int>(1,50)) ));
|
||||
CALL_SUBTEST_3(( schur<Matrix<std::complex<float>, 1, 1> >() ));
|
||||
CALL_SUBTEST_4(( schur<Matrix<float, 3, 3, Eigen::RowMajor> >() ));
|
||||
}
|
75
test/schur_real.cpp
Normal file
75
test/schur_real.cpp
Normal file
@ -0,0 +1,75 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "main.h"
|
||||
#include <Eigen/Eigenvalues>
|
||||
|
||||
template<typename MatrixType> void verifyIsQuasiTriangular(const MatrixType& T)
|
||||
{
|
||||
const int size = T.cols();
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
// The "zeros" in the real Schur decomposition are only approximately zero
|
||||
RealScalar norm = T.norm();
|
||||
|
||||
// Check T is lower Hessenberg
|
||||
for(int row = 2; row < size; ++row) {
|
||||
for(int col = 0; col < row - 1; ++col) {
|
||||
VERIFY_IS_MUCH_SMALLER_THAN(T(row,col), norm);
|
||||
}
|
||||
}
|
||||
|
||||
// Check that any non-zero on the subdiagonal is followed by a zero and is
|
||||
// part of a 2x2 diagonal block with imaginary eigenvalues.
|
||||
for(int row = 1; row < size; ++row) {
|
||||
if (!test_ei_isMuchSmallerThan(T(row,row-1), norm)) {
|
||||
VERIFY(row == size-1 || test_ei_isMuchSmallerThan(T(row+1,row), norm));
|
||||
Scalar tr = T(row-1,row-1) + T(row,row);
|
||||
Scalar det = T(row-1,row-1) * T(row,row) - T(row-1,row) * T(row,row-1);
|
||||
VERIFY(4 * det > tr * tr);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTime)
|
||||
{
|
||||
// Test basic functionality: T is quasi-triangular and A = U T U*
|
||||
for(int counter = 0; counter < g_repeat; ++counter) {
|
||||
MatrixType A = MatrixType::Random(size, size);
|
||||
RealSchur<MatrixType> schurOfA(A);
|
||||
MatrixType U = schurOfA.matrixU();
|
||||
MatrixType T = schurOfA.matrixT();
|
||||
verifyIsQuasiTriangular(T);
|
||||
VERIFY_IS_APPROX(A, U * T * U.transpose());
|
||||
}
|
||||
}
|
||||
|
||||
void test_schur_real()
|
||||
{
|
||||
CALL_SUBTEST_1(( schur<Matrix4f>() ));
|
||||
CALL_SUBTEST_2(( schur<MatrixXd>(ei_random<int>(1,50)) ));
|
||||
CALL_SUBTEST_3(( schur<Matrix<float, 1, 1> >() ));
|
||||
CALL_SUBTEST_4(( schur<Matrix<double, 3, 3, Eigen::RowMajor> >() ));
|
||||
}
|
Loading…
Reference in New Issue
Block a user