mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
Merged in rmlarsen/eigen (pull request PR-188)
Minor cleanups: 1. Get rid of a few unused variables. 2. Get rid of last uses of EIGEN_USE_COST_MODEL.
This commit is contained in:
commit
a09cbf9905
@ -568,10 +568,6 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
|
||||
(parallel_pack_ ? nm_ + nn_ : (shard_by_col_ ? nn_ : nm_)) +
|
||||
nm_ * nn_;
|
||||
if (k < nk_) {
|
||||
// It is important to copy out nm_ and nn_, because once we kick off
|
||||
// the last packing operation this and device_ can be destroyed.
|
||||
Index nm = nm_;
|
||||
Index nn = nn_;
|
||||
// Issue lhs/rhs packing. Their completion will in turn kick off
|
||||
// kernels.
|
||||
if (parallel_pack_) {
|
||||
|
@ -10,9 +10,6 @@
|
||||
#ifndef EIGEN_CXX11_TENSOR_TENSOR_COST_MODEL_H
|
||||
#define EIGEN_CXX11_TENSOR_TENSOR_COST_MODEL_H
|
||||
|
||||
// Turn on the cost model by default
|
||||
#define EIGEN_USE_COST_MODEL
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorEvaluator
|
||||
|
@ -150,9 +150,8 @@ class TensorExecutor<Expression, ThreadPoolDevice, Vectorizable> {
|
||||
const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
|
||||
if (needs_assign)
|
||||
{
|
||||
const Index PacketSize = Vectorizable ? unpacket_traits<typename Evaluator::PacketReturnType>::size : 1;
|
||||
const Index size = array_prod(evaluator.dimensions());
|
||||
#if !defined(EIGEN_USE_SIMPLE_THREAD_POOL) && defined(EIGEN_USE_COST_MODEL)
|
||||
#if !defined(EIGEN_USE_SIMPLE_THREAD_POOL)
|
||||
device.parallelFor(size, evaluator.costPerCoeff(Vectorizable),
|
||||
EvalRange<Evaluator, Index, Vectorizable>::alignBlockSize,
|
||||
[&evaluator](Index first, Index last) {
|
||||
@ -160,15 +159,15 @@ class TensorExecutor<Expression, ThreadPoolDevice, Vectorizable> {
|
||||
});
|
||||
#else
|
||||
size_t num_threads = device.numThreads();
|
||||
#ifdef EIGEN_USE_COST_MODEL
|
||||
if (num_threads > 1) {
|
||||
cost = evaluator.costPerCoeff(Vectorizable)
|
||||
num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
|
||||
size, evaluator.costPerCoeff(Vectorizable), num_threads);
|
||||
}
|
||||
#endif
|
||||
if (num_threads == 1) {
|
||||
EvalRange<Evaluator, Index, Vectorizable>::run(&evaluator, 0, size);
|
||||
} else {
|
||||
const Index PacketSize = Vectorizable ? unpacket_traits<typename Evaluator::PacketReturnType>::size : 1;
|
||||
Index blocksz = std::ceil<Index>(static_cast<float>(size)/num_threads) + PacketSize - 1;
|
||||
const Index blocksize = numext::maxi<Index>(PacketSize, (blocksz - (blocksz % PacketSize)));
|
||||
const Index numblocks = size / blocksize;
|
||||
@ -185,7 +184,7 @@ class TensorExecutor<Expression, ThreadPoolDevice, Vectorizable> {
|
||||
}
|
||||
barrier.Wait();
|
||||
}
|
||||
#endif // defined(EIGEN_USE_NONBLOCKING_THREAD_POOL) && defined(EIGEN_USE_COST_MODEL)
|
||||
#endif // defined(!EIGEN_USE_SIMPLE_THREAD_POOL)
|
||||
}
|
||||
evaluator.cleanup();
|
||||
}
|
||||
|
@ -248,16 +248,12 @@ struct FullReducer<Self, Op, ThreadPoolDevice, Vectorizable> {
|
||||
*output = reducer.finalize(reducer.initialize());
|
||||
return;
|
||||
}
|
||||
#ifdef EIGEN_USE_COST_MODEL
|
||||
const TensorOpCost cost =
|
||||
self.m_impl.costPerCoeff(Vectorizable) +
|
||||
TensorOpCost(0, 0, internal::functor_traits<Op>::Cost, Vectorizable,
|
||||
PacketSize);
|
||||
const int num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
|
||||
num_coeffs, cost, device.numThreads());
|
||||
#else
|
||||
const int num_threads = device.numThreads();
|
||||
#endif
|
||||
if (num_threads == 1) {
|
||||
*output =
|
||||
InnerMostDimReducer<Self, Op, Vectorizable>::reduce(self, 0, num_coeffs, reducer);
|
||||
@ -472,22 +468,14 @@ struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType>, Device>
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
|
||||
|
||||
static bool size_large_enough(Index total_size) {
|
||||
#ifndef EIGEN_USE_COST_MODEL
|
||||
return total_size > 1024 * 1024;
|
||||
#else
|
||||
return true || total_size;
|
||||
#endif
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool evalSubExprsIfNeeded(CoeffReturnType* data) {
|
||||
m_impl.evalSubExprsIfNeeded(NULL);
|
||||
|
||||
// Use the FullReducer if possible.
|
||||
if (RunningFullReduction && internal::FullReducer<Self, Op, Device>::HasOptimizedImplementation &&
|
||||
if (RunningFullReduction &&
|
||||
internal::FullReducer<Self, Op, Device>::HasOptimizedImplementation &&
|
||||
((RunningOnGPU && (m_device.majorDeviceVersion() >= 3)) ||
|
||||
(!RunningOnGPU && size_large_enough(internal::array_prod(m_impl.dimensions()))))) {
|
||||
|
||||
!RunningOnGPU)) {
|
||||
bool need_assign = false;
|
||||
if (!data) {
|
||||
m_result = static_cast<CoeffReturnType*>(m_device.allocate(sizeof(CoeffReturnType)));
|
||||
|
Loading…
Reference in New Issue
Block a user