mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
Fix extraction of complex eigenvalue pairs in real generalized eigenvalue problems.
This commit is contained in:
parent
9dd9d58273
commit
9fc8379328
@ -327,13 +327,33 @@ GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixTyp
|
||||
}
|
||||
else
|
||||
{
|
||||
Scalar p = Scalar(0.5) * (m_matS.coeff(i, i) - m_matS.coeff(i+1, i+1));
|
||||
Scalar z = sqrt(abs(p * p + m_matS.coeff(i+1, i) * m_matS.coeff(i, i+1)));
|
||||
m_alphas.coeffRef(i) = ComplexScalar(m_matS.coeff(i+1, i+1) + p, z);
|
||||
m_alphas.coeffRef(i+1) = ComplexScalar(m_matS.coeff(i+1, i+1) + p, -z);
|
||||
// We need to extract the generalized eigenvalues of the pair of a general 2x2 block S and a triangular 2x2 block T
|
||||
// From the eigen decomposition of T = U * E * U^-1,
|
||||
// we can extract the eigenvalues of (U^-1 * S * U) / E
|
||||
// Here, we can take advantage that E = diag(T), and U = [ 1 T_01 ; 0 T_11-T_00], and U^-1 = [1 -T_11/(T_11-T_00) ; 0 1/(T_11-T_00)].
|
||||
// Then taking beta=T_00*T_11*(T_11-T_00), we can avoid any division, and alpha is the eigenvalues of A = (U^-1 * S * U) * diag(T_11,T_00) * (T_11-T_00):
|
||||
|
||||
// T = [a b ; 0 c]
|
||||
// S = [e f ; g h]
|
||||
RealScalar a = m_realQZ.matrixT().coeff(i, i), b = m_realQZ.matrixT().coeff(i, i+1), c = m_realQZ.matrixT().coeff(i+1, i+1);
|
||||
RealScalar e = m_matS.coeff(i, i), f = m_matS.coeff(i, i+1), g = m_matS.coeff(i+1, i), h = m_matS.coeff(i+1, i+1);
|
||||
RealScalar d = c-a;
|
||||
RealScalar gb = g*b;
|
||||
Matrix<RealScalar,2,2> A;
|
||||
A << (e*d-gb)*c, ((e*b+f*d-h*b)*d-gb*b)*a,
|
||||
g*c , (gb+h*d)*a;
|
||||
|
||||
// NOTE, we could also compute the SVD of T's block during the QZ factorization so that the respective T block is guaranteed to be diagonal,
|
||||
// and then we could directly apply the formula below (while taking care of scaling S columns by T11,T00):
|
||||
|
||||
Scalar p = Scalar(0.5) * (A.coeff(i, i) - A.coeff(i+1, i+1));
|
||||
Scalar z = sqrt(abs(p * p + A.coeff(i+1, i) * A.coeff(i, i+1)));
|
||||
m_alphas.coeffRef(i) = ComplexScalar(A.coeff(i+1, i+1) + p, z);
|
||||
m_alphas.coeffRef(i+1) = ComplexScalar(A.coeff(i+1, i+1) + p, -z);
|
||||
|
||||
m_betas.coeffRef(i) =
|
||||
m_betas.coeffRef(i+1) = a*c*d;
|
||||
|
||||
m_betas.coeffRef(i) = m_realQZ.matrixT().coeff(i,i);
|
||||
m_betas.coeffRef(i+1) = m_realQZ.matrixT().coeff(i,i);
|
||||
i += 2;
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user