simplify and clean a bit the Pastix support module

This commit is contained in:
Gael Guennebaud 2012-06-12 16:47:14 +02:00
parent 4e8523b835
commit 9c7b62415a

View File

@ -35,7 +35,6 @@ namespace Eigen {
*
* \sa TutorialSparseDirectSolvers
*/
template<typename _MatrixType, bool IsStrSym = false> class PastixLU;
template<typename _MatrixType, int Options> class PastixLLT;
template<typename _MatrixType, int Options> class PastixLDLT;
@ -75,32 +74,34 @@ namespace internal
void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, float *vals, int *perm, int * invp, float *x, int nbrhs, int *iparm, double *dparm)
{
if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
if (nbrhs == 0) x = NULL;
if (nbrhs == 0) {x = NULL; nbrhs=1;}
s_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm);
}
void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, double *vals, int *perm, int * invp, double *x, int nbrhs, int *iparm, double *dparm)
{
if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
if (nbrhs == 0) x = NULL;
if (nbrhs == 0) {x = NULL; nbrhs=1;}
d_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm);
}
void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<float> *vals, int *perm, int * invp, std::complex<float> *x, int nbrhs, int *iparm, double *dparm)
{
if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
if (nbrhs == 0) {x = NULL; nbrhs=1;}
c_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<COMPLEX*>(vals), perm, invp, reinterpret_cast<COMPLEX*>(x), nbrhs, iparm, dparm);
}
void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<double> *vals, int *perm, int * invp, std::complex<double> *x, int nbrhs, int *iparm, double *dparm)
{
if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
if (nbrhs == 0) x = NULL;
if (nbrhs == 0) {x = NULL; nbrhs=1;}
z_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<DCOMPLEX*>(vals), perm, invp, reinterpret_cast<DCOMPLEX*>(x), nbrhs, iparm, dparm);
}
// Convert the matrix to Fortran-style Numbering
template <typename MatrixType>
void EigenToFortranNumbering (MatrixType& mat)
void c_to_fortran_numbering (MatrixType& mat)
{
if ( !(mat.outerIndexPtr()[0]) )
{
@ -114,7 +115,7 @@ namespace internal
// Convert to C-style Numbering
template <typename MatrixType>
void EigenToCNumbering (MatrixType& mat)
void fortran_to_c_numbering (MatrixType& mat)
{
// Check the Numbering
if ( mat.outerIndexPtr()[0] == 1 )
@ -126,38 +127,12 @@ namespace internal
--mat.innerIndexPtr()[i];
}
}
// Symmetrize the graph of the input matrix
// In : The Input matrix to symmetrize the pattern
// Out : The output matrix
// StrMatTrans : The structural pattern of the transpose of In; It is
// used to optimize the future symmetrization with the same matrix pattern
// WARNING It is assumed here that successive calls to this routine are done
// with matrices having the same pattern.
template <typename MatrixType>
void EigenSymmetrizeMatrixGraph (const MatrixType& In, MatrixType& Out, MatrixType& StrMatTrans, bool& hasTranspose)
{
eigen_assert(In.cols()==In.rows() && " Can only symmetrize the graph of a square matrix");
if (!hasTranspose)
{ //First call to this routine, need to compute the structural pattern of In^T
StrMatTrans = In.transpose();
// Set the elements of the matrix to zero
for (int i = 0; i < StrMatTrans.rows(); i++)
{
for (typename MatrixType::InnerIterator it(StrMatTrans, i); it; ++it)
it.valueRef() = 0.0;
}
hasTranspose = true;
}
Out = (StrMatTrans + In).eval();
}
}
// This is the base class to interface with PaStiX functions.
// Users should not used this class directly.
template <class Derived>
class PastixBase
class PastixBase : internal::noncopyable
{
public:
typedef typename internal::pastix_traits<Derived>::MatrixType _MatrixType;
@ -166,29 +141,19 @@ class PastixBase
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
typedef Matrix<Scalar,Dynamic,1> Vector;
typedef SparseMatrix<Scalar, ColMajor> ColSpMatrix;
public:
PastixBase():m_initisOk(false),m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false)
PastixBase() : m_initisOk(false), m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false), m_pastixdata(0), m_size(0)
{
m_pastixdata = 0;
m_hasTranspose = false;
PastixInit();
init();
}
~PastixBase()
{
PastixDestroy();
clean();
}
// Initialize the Pastix data structure, check the matrix
void PastixInit();
// Compute the ordering and the symbolic factorization
Derived& analyzePattern (MatrixType& mat);
// Compute the numerical factorization
Derived& factorize (MatrixType& mat);
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
*
@ -269,7 +234,6 @@ class PastixBase
/** Return a reference to a particular index parameter of the DPARM vector
* \sa dparm()
*/
double& dparm(int idxparam)
{
return m_dparm(idxparam);
@ -307,17 +271,27 @@ class PastixBase
}
protected:
// Initialize the Pastix data structure, check the matrix
void init();
// Compute the ordering and the symbolic factorization
void analyzePattern(ColSpMatrix& mat);
// Compute the numerical factorization
void factorize(ColSpMatrix& mat);
// Free all the data allocated by Pastix
void PastixDestroy()
void clean()
{
eigen_assert(m_initisOk && "The Pastix structure should be allocated first");
m_iparm(IPARM_START_TASK) = API_TASK_CLEAN;
m_iparm(IPARM_END_TASK) = API_TASK_CLEAN;
internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, m_mat_null.outerIndexPtr(), m_mat_null.innerIndexPtr(),
m_mat_null.valuePtr(), m_perm.data(), m_invp.data(), m_vec_null.data(), 1, m_iparm.data(), m_dparm.data());
internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar*)0,
m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data());
}
Derived& compute (MatrixType& mat);
void compute(ColSpMatrix& mat);
int m_initisOk;
int m_analysisIsOk;
@ -325,22 +299,12 @@ class PastixBase
bool m_isInitialized;
mutable ComputationInfo m_info;
mutable pastix_data_t *m_pastixdata; // Data structure for pastix
mutable SparseMatrix<Scalar, ColMajor> m_mat_null; // An input null matrix
mutable Matrix<Scalar, Dynamic,1> m_vec_null; // An input null vector
mutable SparseMatrix<Scalar, ColMajor> m_StrMatTrans; // The transpose pattern of the input matrix
mutable bool m_hasTranspose; // The transpose of the current matrix has already been computed
mutable int m_comm; // The MPI communicator identifier
mutable Matrix<Index,IPARM_SIZE,1> m_iparm; // integer vector for the input parameters
mutable Matrix<int,IPARM_SIZE,1> m_iparm; // integer vector for the input parameters
mutable Matrix<double,DPARM_SIZE,1> m_dparm; // Scalar vector for the input parameters
mutable Matrix<Index,Dynamic,1> m_perm; // Permutation vector
mutable Matrix<Index,Dynamic,1> m_invp; // Inverse permutation vector
mutable int m_ordering; // ordering method to use
mutable int m_amalgamation; // level of amalgamation
mutable int m_size; // Size of the matrix
private:
PastixBase(PastixBase& ) {}
};
/** Initialize the PaStiX data structure.
@ -348,29 +312,29 @@ class PastixBase
* \sa iparm() dparm()
*/
template <class Derived>
void PastixBase<Derived>::PastixInit()
void PastixBase<Derived>::init()
{
m_size = 0;
m_iparm.resize(IPARM_SIZE);
m_dparm.resize(DPARM_SIZE);
m_iparm.setZero(IPARM_SIZE);
m_dparm.setZero(DPARM_SIZE);
m_iparm(IPARM_MODIFY_PARAMETER) = API_NO;
if(m_pastixdata)
{ // This trick is used to reset the Pastix internal data between successive
// calls with (structural) different matrices
PastixDestroy();
m_pastixdata = 0;
m_iparm(IPARM_MODIFY_PARAMETER) = API_YES;
m_hasTranspose = false;
}
pastix(&m_pastixdata, MPI_COMM_WORLD,
0, 0, 0, 0,
0, 0, 0, 1, m_iparm.data(), m_dparm.data());
m_iparm[IPARM_MATRIX_VERIFICATION] = API_NO;
m_iparm[IPARM_VERBOSE] = 2;
m_iparm[IPARM_ORDERING] = API_ORDER_SCOTCH;
m_iparm[IPARM_INCOMPLETE] = API_NO;
m_iparm[IPARM_OOC_LIMIT] = 2000;
m_iparm[IPARM_RHS_MAKING] = API_RHS_B;
m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO;
m_iparm(IPARM_START_TASK) = API_TASK_INIT;
m_iparm(IPARM_END_TASK) = API_TASK_INIT;
m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO;
internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, m_mat_null.outerIndexPtr(), m_mat_null.innerIndexPtr(),
m_mat_null.valuePtr(), m_perm.data(), m_invp.data(), m_vec_null.data(), 1, m_iparm.data(), m_dparm.data());
m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO;
internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar*)0,
0, 0, 0, 0, m_iparm.data(), m_dparm.data());
// Check the returned error
if(m_iparm(IPARM_ERROR_NUMBER)) {
@ -384,82 +348,74 @@ void PastixBase<Derived>::PastixInit()
}
template <class Derived>
Derived& PastixBase<Derived>::compute(MatrixType& mat)
void PastixBase<Derived>::compute(ColSpMatrix& mat)
{
eigen_assert(mat.rows() == mat.cols() && "The input matrix should be squared");
typedef typename MatrixType::Scalar Scalar;
// Save the size of the current matrix
m_size = mat.rows();
// Convert the matrix in fortran-style numbering
internal::EigenToFortranNumbering(mat);
analyzePattern(mat);
analyzePattern(mat);
factorize(mat);
m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO;
if (m_factorizationIsOk) m_isInitialized = true;
//Convert back the matrix -- Is it really necessary here
internal::EigenToCNumbering(mat);
return derived();
m_isInitialized = m_factorizationIsOk;
}
template <class Derived>
Derived& PastixBase<Derived>::analyzePattern(MatrixType& mat)
{
eigen_assert(m_initisOk && "PastixInit should be called first to set the default parameters");
void PastixBase<Derived>::analyzePattern(ColSpMatrix& mat)
{
eigen_assert(m_initisOk && "The initialization of PaSTiX failed");
// clean previous calls
if(m_size>0)
clean();
m_size = mat.rows();
m_perm.resize(m_size);
m_invp.resize(m_size);
// Convert the matrix in fortran-style numbering
internal::EigenToFortranNumbering(mat);
m_iparm(IPARM_START_TASK) = API_TASK_ORDERING;
m_iparm(IPARM_END_TASK) = API_TASK_ANALYSE;
internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(),
mat.valuePtr(), m_perm.data(), m_invp.data(), m_vec_null.data(), 0, m_iparm.data(), m_dparm.data());
mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data());
// Check the returned error
if(m_iparm(IPARM_ERROR_NUMBER)) {
if(m_iparm(IPARM_ERROR_NUMBER))
{
m_info = NumericalIssue;
m_analysisIsOk = false;
}
else {
else
{
m_info = Success;
m_analysisIsOk = true;
}
return derived();
}
template <class Derived>
Derived& PastixBase<Derived>::factorize(MatrixType& mat)
void PastixBase<Derived>::factorize(ColSpMatrix& mat)
{
// if(&m_cpyMat != &mat) m_cpyMat = mat;
eigen_assert(m_analysisIsOk && "The analysis phase should be called before the factorization phase");
m_iparm(IPARM_START_TASK) = API_TASK_NUMFACT;
m_iparm(IPARM_END_TASK) = API_TASK_NUMFACT;
m_size = mat.rows();
// Convert the matrix in fortran-style numbering
internal::EigenToFortranNumbering(mat);
internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(),
mat.valuePtr(), m_perm.data(), m_invp.data(), m_vec_null.data(), 0, m_iparm.data(), m_dparm.data());
mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data());
// Check the returned error
if(m_iparm(IPARM_ERROR_NUMBER)) {
if(m_iparm(IPARM_ERROR_NUMBER))
{
m_info = NumericalIssue;
m_factorizationIsOk = false;
m_isInitialized = false;
}
else {
else
{
m_info = Success;
m_factorizationIsOk = true;
m_isInitialized = true;
}
return derived();
}
/* Solve the system */
@ -475,20 +431,17 @@ bool PastixBase<Base>::_solve (const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) co
x = b; /* on return, x is overwritten by the computed solution */
for (int i = 0; i < b.cols(); i++){
m_iparm(IPARM_START_TASK) = API_TASK_SOLVE;
m_iparm(IPARM_END_TASK) = API_TASK_REFINE;
m_iparm(IPARM_RHS_MAKING) = API_RHS_B;
internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, x.rows(), m_mat_null.outerIndexPtr(), m_mat_null.innerIndexPtr(),
m_mat_null.valuePtr(), m_perm.data(), m_invp.data(), &x(0, i), rhs, m_iparm.data(), m_dparm.data());
m_iparm[IPARM_START_TASK] = API_TASK_SOLVE;
m_iparm[IPARM_END_TASK] = API_TASK_REFINE;
internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, x.rows(), 0, 0, 0,
m_perm.data(), m_invp.data(), &x(0, i), rhs, m_iparm.data(), m_dparm.data());
}
// Check the returned error
if(m_iparm(IPARM_ERROR_NUMBER)) {
m_info = NumericalIssue;
return false;
}
else {
return true;
}
m_info = m_iparm(IPARM_ERROR_NUMBER)==0 ? Success : NumericalIssue;
return m_iparm(IPARM_ERROR_NUMBER)==0;
}
/** \ingroup PaStiXSupport_Module
@ -516,14 +469,18 @@ class PastixLU : public PastixBase< PastixLU<_MatrixType> >
public:
typedef _MatrixType MatrixType;
typedef PastixBase<PastixLU<MatrixType> > Base;
typedef typename MatrixType::Scalar Scalar;
typedef SparseMatrix<Scalar, ColMajor> PaStiXType;
typedef typename Base::ColSpMatrix ColSpMatrix;
typedef typename MatrixType::Index Index;
public:
PastixLU():Base() {}
PastixLU() : Base()
{
init();
}
PastixLU(const MatrixType& matrix):Base()
{
init();
compute(matrix);
}
/** Compute the LU supernodal factorization of \p matrix.
@ -533,18 +490,9 @@ class PastixLU : public PastixBase< PastixLU<_MatrixType> >
*/
void compute (const MatrixType& matrix)
{
// Pastix supports only column-major matrices with a symmetric pattern
Base::PastixInit();
PaStiXType temp(matrix.rows(), matrix.cols());
// Symmetrize the graph of the matrix
if (IsStrSym)
temp = matrix;
else
{
internal::EigenSymmetrizeMatrixGraph<PaStiXType>(matrix, temp, m_StrMatTrans, m_hasTranspose);
}
m_iparm[IPARM_SYM] = API_SYM_NO;
m_iparm(IPARM_FACTORIZATION) = API_FACT_LU;
m_structureIsUptodate = false;
ColSpMatrix temp;
grabMatrix(matrix, temp);
Base::compute(temp);
}
/** Compute the LU symbolic factorization of \p matrix using its sparsity pattern.
@ -554,20 +502,9 @@ class PastixLU : public PastixBase< PastixLU<_MatrixType> >
*/
void analyzePattern(const MatrixType& matrix)
{
Base::PastixInit();
/* Pastix supports only column-major matrices with symmetrized patterns */
SparseMatrix<Scalar, ColMajor> temp(matrix.rows(), matrix.cols());
// Symmetrize the graph of the matrix
if (IsStrSym)
temp = matrix;
else
{
internal::EigenSymmetrizeMatrixGraph<PaStiXType>(matrix, temp, m_StrMatTrans,m_hasTranspose);
}
m_iparm(IPARM_SYM) = API_SYM_NO;
m_iparm(IPARM_FACTORIZATION) = API_FACT_LU;
m_structureIsUptodate = false;
ColSpMatrix temp;
grabMatrix(matrix, temp);
Base::analyzePattern(temp);
}
@ -578,27 +515,48 @@ class PastixLU : public PastixBase< PastixLU<_MatrixType> >
*/
void factorize(const MatrixType& matrix)
{
/* Pastix supports only column-major matrices with symmetrized patterns */
SparseMatrix<Scalar, ColMajor> temp(matrix.rows(), matrix.cols());
// Symmetrize the graph of the matrix
if (IsStrSym)
temp = matrix;
else
{
internal::EigenSymmetrizeMatrixGraph<PaStiXType>(matrix, temp, m_StrMatTrans,m_hasTranspose);
}
m_iparm(IPARM_SYM) = API_SYM_NO;
m_iparm(IPARM_FACTORIZATION) = API_FACT_LU;
ColSpMatrix temp;
grabMatrix(matrix, temp);
Base::factorize(temp);
}
protected:
void init()
{
m_structureIsUptodate = false;
m_iparm(IPARM_SYM) = API_SYM_NO;
m_iparm(IPARM_FACTORIZATION) = API_FACT_LU;
}
void grabMatrix(const MatrixType& matrix, ColSpMatrix& out)
{
if(IsStrSym)
out = matrix;
else
{
if(!m_structureIsUptodate)
{
// update the transposed structure
m_transposedStructure = matrix.transpose();
// Set the elements of the matrix to zero
for (Index j=0; j<m_transposedStructure.outerSize(); ++j)
for(typename ColSpMatrix::InnerIterator it(m_transposedStructure, j); it; ++it)
it.valueRef() = 0.0;
m_structureIsUptodate = true;
}
out = m_transposedStructure + matrix;
}
internal::c_to_fortran_numbering(out);
}
using Base::m_iparm;
using Base::m_dparm;
using Base::m_StrMatTrans;
using Base::m_hasTranspose;
private:
PastixLU(PastixLU& ) {}
ColSpMatrix m_transposedStructure;
bool m_structureIsUptodate;
};
/** \ingroup PaStiXSupport_Module
@ -621,15 +579,18 @@ class PastixLLT : public PastixBase< PastixLLT<_MatrixType, _UpLo> >
public:
typedef _MatrixType MatrixType;
typedef PastixBase<PastixLLT<MatrixType, _UpLo> > Base;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
typedef typename Base::ColSpMatrix ColSpMatrix;
public:
enum { UpLo = _UpLo };
PastixLLT():Base() {}
PastixLLT() : Base()
{
init();
}
PastixLLT(const MatrixType& matrix):Base()
{
init();
compute(matrix);
}
@ -638,13 +599,8 @@ class PastixLLT : public PastixBase< PastixLLT<_MatrixType, _UpLo> >
*/
void compute (const MatrixType& matrix)
{
// Pastix supports only lower, column-major matrices
Base::PastixInit(); // This is necessary to let PaStiX initialize its data structure between successive calls to compute
SparseMatrix<Scalar, ColMajor> temp(matrix.rows(), matrix.cols());
PermutationMatrix<Dynamic,Dynamic,Index> pnull;
temp.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>().twistedBy(pnull);
m_iparm(IPARM_SYM) = API_SYM_YES;
m_iparm(IPARM_FACTORIZATION) = API_FACT_LLT;
ColSpMatrix temp;
grabMatrix(matrix, temp);
Base::compute(temp);
}
@ -654,13 +610,8 @@ class PastixLLT : public PastixBase< PastixLLT<_MatrixType, _UpLo> >
*/
void analyzePattern(const MatrixType& matrix)
{
Base::PastixInit();
// Pastix supports only lower, column-major matrices
SparseMatrix<Scalar, ColMajor> temp(matrix.rows(), matrix.cols());
PermutationMatrix<Dynamic,Dynamic,Index> pnull;
temp.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>().twistedBy(pnull);
m_iparm(IPARM_SYM) = API_SYM_YES;
m_iparm(IPARM_FACTORIZATION) = API_FACT_LLT;
ColSpMatrix temp;
grabMatrix(matrix, temp);
Base::analyzePattern(temp);
}
/** Compute the LL^T supernodal numerical factorization of \p matrix
@ -668,19 +619,25 @@ class PastixLLT : public PastixBase< PastixLLT<_MatrixType, _UpLo> >
*/
void factorize(const MatrixType& matrix)
{
// Pastix supports only lower, column-major matrices
SparseMatrix<Scalar, ColMajor> temp(matrix.rows(), matrix.cols());
PermutationMatrix<Dynamic,Dynamic,Index> pnull;
temp.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>().twistedBy(pnull);
m_iparm(IPARM_SYM) = API_SYM_YES;
m_iparm(IPARM_FACTORIZATION) = API_FACT_LLT;
ColSpMatrix temp;
grabMatrix(matrix, temp);
Base::factorize(temp);
}
protected:
using Base::m_iparm;
private:
PastixLLT(PastixLLT& ) {}
void init()
{
m_iparm(IPARM_SYM) = API_SYM_YES;
m_iparm(IPARM_FACTORIZATION) = API_FACT_LLT;
}
void grabMatrix(const MatrixType& matrix, ColSpMatrix& out)
{
// Pastix supports only lower, column-major matrices
out.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>();
internal::c_to_fortran_numbering(out);
}
};
/** \ingroup PaStiXSupport_Module
@ -700,18 +657,21 @@ class PastixLLT : public PastixBase< PastixLLT<_MatrixType, _UpLo> >
template<typename _MatrixType, int _UpLo>
class PastixLDLT : public PastixBase< PastixLDLT<_MatrixType, _UpLo> >
{
public:
public:
typedef _MatrixType MatrixType;
typedef PastixBase<PastixLDLT<MatrixType, _UpLo> > Base;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
typedef typename Base::ColSpMatrix ColSpMatrix;
public:
enum { UpLo = _UpLo };
PastixLDLT():Base() {}
PastixLDLT():Base()
{
init();
}
PastixLDLT(const MatrixType& matrix):Base()
{
init();
compute(matrix);
}
@ -720,13 +680,8 @@ public:
*/
void compute (const MatrixType& matrix)
{
Base::PastixInit();
// Pastix supports only lower, column-major matrices
SparseMatrix<Scalar, ColMajor> temp(matrix.rows(), matrix.cols());
PermutationMatrix<Dynamic,Dynamic,Index> pnull;
temp.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>().twistedBy(pnull);
m_iparm(IPARM_SYM) = API_SYM_YES;
m_iparm(IPARM_FACTORIZATION) = API_FACT_LDLT;
ColSpMatrix temp;
grabMatrix(matrix, temp);
Base::compute(temp);
}
@ -736,14 +691,8 @@ public:
*/
void analyzePattern(const MatrixType& matrix)
{
Base::PastixInit();
// Pastix supports only lower, column-major matrices
SparseMatrix<Scalar, ColMajor> temp(matrix.rows(), matrix.cols());
PermutationMatrix<Dynamic,Dynamic,Index> pnull;
temp.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>().twistedBy(pnull);
m_iparm(IPARM_SYM) = API_SYM_YES;
m_iparm(IPARM_FACTORIZATION) = API_FACT_LDLT;
ColSpMatrix temp;
grabMatrix(matrix, temp);
Base::analyzePattern(temp);
}
/** Compute the LDL^T supernodal numerical factorization of \p matrix
@ -751,21 +700,26 @@ public:
*/
void factorize(const MatrixType& matrix)
{
// Pastix supports only lower, column-major matrices
SparseMatrix<Scalar, ColMajor> temp(matrix.rows(), matrix.cols());
PermutationMatrix<Dynamic,Dynamic,Index> pnull;
temp.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>().twistedBy(pnull);
m_iparm(IPARM_SYM) = API_SYM_YES;
m_iparm(IPARM_FACTORIZATION) = API_FACT_LDLT;
ColSpMatrix temp;
grabMatrix(matrix, temp);
Base::factorize(temp);
}
protected:
using Base::m_iparm;
private:
PastixLDLT(PastixLDLT& ) {}
void init()
{
m_iparm(IPARM_SYM) = API_SYM_YES;
m_iparm(IPARM_FACTORIZATION) = API_FACT_LDLT;
}
void grabMatrix(const MatrixType& matrix, ColSpMatrix& out)
{
// Pastix supports only lower, column-major matrices
out.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>();
internal::c_to_fortran_numbering(out);
}
};
namespace internal {