mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-27 07:29:52 +08:00
simplify and clean a bit the Pastix support module
This commit is contained in:
parent
4e8523b835
commit
9c7b62415a
@ -35,7 +35,6 @@ namespace Eigen {
|
||||
*
|
||||
* \sa TutorialSparseDirectSolvers
|
||||
*/
|
||||
|
||||
template<typename _MatrixType, bool IsStrSym = false> class PastixLU;
|
||||
template<typename _MatrixType, int Options> class PastixLLT;
|
||||
template<typename _MatrixType, int Options> class PastixLDLT;
|
||||
@ -75,32 +74,34 @@ namespace internal
|
||||
void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, float *vals, int *perm, int * invp, float *x, int nbrhs, int *iparm, double *dparm)
|
||||
{
|
||||
if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
|
||||
if (nbrhs == 0) x = NULL;
|
||||
if (nbrhs == 0) {x = NULL; nbrhs=1;}
|
||||
s_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm);
|
||||
}
|
||||
|
||||
void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, double *vals, int *perm, int * invp, double *x, int nbrhs, int *iparm, double *dparm)
|
||||
{
|
||||
if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
|
||||
if (nbrhs == 0) x = NULL;
|
||||
if (nbrhs == 0) {x = NULL; nbrhs=1;}
|
||||
d_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm);
|
||||
}
|
||||
|
||||
void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<float> *vals, int *perm, int * invp, std::complex<float> *x, int nbrhs, int *iparm, double *dparm)
|
||||
{
|
||||
if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
|
||||
if (nbrhs == 0) {x = NULL; nbrhs=1;}
|
||||
c_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<COMPLEX*>(vals), perm, invp, reinterpret_cast<COMPLEX*>(x), nbrhs, iparm, dparm);
|
||||
}
|
||||
|
||||
void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<double> *vals, int *perm, int * invp, std::complex<double> *x, int nbrhs, int *iparm, double *dparm)
|
||||
{
|
||||
if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
|
||||
if (nbrhs == 0) x = NULL;
|
||||
if (nbrhs == 0) {x = NULL; nbrhs=1;}
|
||||
z_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<DCOMPLEX*>(vals), perm, invp, reinterpret_cast<DCOMPLEX*>(x), nbrhs, iparm, dparm);
|
||||
}
|
||||
|
||||
// Convert the matrix to Fortran-style Numbering
|
||||
template <typename MatrixType>
|
||||
void EigenToFortranNumbering (MatrixType& mat)
|
||||
void c_to_fortran_numbering (MatrixType& mat)
|
||||
{
|
||||
if ( !(mat.outerIndexPtr()[0]) )
|
||||
{
|
||||
@ -114,7 +115,7 @@ namespace internal
|
||||
|
||||
// Convert to C-style Numbering
|
||||
template <typename MatrixType>
|
||||
void EigenToCNumbering (MatrixType& mat)
|
||||
void fortran_to_c_numbering (MatrixType& mat)
|
||||
{
|
||||
// Check the Numbering
|
||||
if ( mat.outerIndexPtr()[0] == 1 )
|
||||
@ -126,38 +127,12 @@ namespace internal
|
||||
--mat.innerIndexPtr()[i];
|
||||
}
|
||||
}
|
||||
|
||||
// Symmetrize the graph of the input matrix
|
||||
// In : The Input matrix to symmetrize the pattern
|
||||
// Out : The output matrix
|
||||
// StrMatTrans : The structural pattern of the transpose of In; It is
|
||||
// used to optimize the future symmetrization with the same matrix pattern
|
||||
// WARNING It is assumed here that successive calls to this routine are done
|
||||
// with matrices having the same pattern.
|
||||
template <typename MatrixType>
|
||||
void EigenSymmetrizeMatrixGraph (const MatrixType& In, MatrixType& Out, MatrixType& StrMatTrans, bool& hasTranspose)
|
||||
{
|
||||
eigen_assert(In.cols()==In.rows() && " Can only symmetrize the graph of a square matrix");
|
||||
if (!hasTranspose)
|
||||
{ //First call to this routine, need to compute the structural pattern of In^T
|
||||
StrMatTrans = In.transpose();
|
||||
// Set the elements of the matrix to zero
|
||||
for (int i = 0; i < StrMatTrans.rows(); i++)
|
||||
{
|
||||
for (typename MatrixType::InnerIterator it(StrMatTrans, i); it; ++it)
|
||||
it.valueRef() = 0.0;
|
||||
}
|
||||
hasTranspose = true;
|
||||
}
|
||||
Out = (StrMatTrans + In).eval();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// This is the base class to interface with PaStiX functions.
|
||||
// Users should not used this class directly.
|
||||
template <class Derived>
|
||||
class PastixBase
|
||||
class PastixBase : internal::noncopyable
|
||||
{
|
||||
public:
|
||||
typedef typename internal::pastix_traits<Derived>::MatrixType _MatrixType;
|
||||
@ -166,29 +141,19 @@ class PastixBase
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef Matrix<Scalar,Dynamic,1> Vector;
|
||||
typedef SparseMatrix<Scalar, ColMajor> ColSpMatrix;
|
||||
|
||||
public:
|
||||
|
||||
PastixBase():m_initisOk(false),m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false)
|
||||
PastixBase() : m_initisOk(false), m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false), m_pastixdata(0), m_size(0)
|
||||
{
|
||||
m_pastixdata = 0;
|
||||
m_hasTranspose = false;
|
||||
PastixInit();
|
||||
init();
|
||||
}
|
||||
|
||||
~PastixBase()
|
||||
{
|
||||
PastixDestroy();
|
||||
clean();
|
||||
}
|
||||
|
||||
// Initialize the Pastix data structure, check the matrix
|
||||
void PastixInit();
|
||||
|
||||
// Compute the ordering and the symbolic factorization
|
||||
Derived& analyzePattern (MatrixType& mat);
|
||||
|
||||
// Compute the numerical factorization
|
||||
Derived& factorize (MatrixType& mat);
|
||||
|
||||
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
|
||||
*
|
||||
@ -269,7 +234,6 @@ class PastixBase
|
||||
/** Return a reference to a particular index parameter of the DPARM vector
|
||||
* \sa dparm()
|
||||
*/
|
||||
|
||||
double& dparm(int idxparam)
|
||||
{
|
||||
return m_dparm(idxparam);
|
||||
@ -307,17 +271,27 @@ class PastixBase
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
// Initialize the Pastix data structure, check the matrix
|
||||
void init();
|
||||
|
||||
// Compute the ordering and the symbolic factorization
|
||||
void analyzePattern(ColSpMatrix& mat);
|
||||
|
||||
// Compute the numerical factorization
|
||||
void factorize(ColSpMatrix& mat);
|
||||
|
||||
// Free all the data allocated by Pastix
|
||||
void PastixDestroy()
|
||||
void clean()
|
||||
{
|
||||
eigen_assert(m_initisOk && "The Pastix structure should be allocated first");
|
||||
m_iparm(IPARM_START_TASK) = API_TASK_CLEAN;
|
||||
m_iparm(IPARM_END_TASK) = API_TASK_CLEAN;
|
||||
internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, m_mat_null.outerIndexPtr(), m_mat_null.innerIndexPtr(),
|
||||
m_mat_null.valuePtr(), m_perm.data(), m_invp.data(), m_vec_null.data(), 1, m_iparm.data(), m_dparm.data());
|
||||
internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar*)0,
|
||||
m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data());
|
||||
}
|
||||
|
||||
Derived& compute (MatrixType& mat);
|
||||
void compute(ColSpMatrix& mat);
|
||||
|
||||
int m_initisOk;
|
||||
int m_analysisIsOk;
|
||||
@ -325,22 +299,12 @@ class PastixBase
|
||||
bool m_isInitialized;
|
||||
mutable ComputationInfo m_info;
|
||||
mutable pastix_data_t *m_pastixdata; // Data structure for pastix
|
||||
mutable SparseMatrix<Scalar, ColMajor> m_mat_null; // An input null matrix
|
||||
mutable Matrix<Scalar, Dynamic,1> m_vec_null; // An input null vector
|
||||
mutable SparseMatrix<Scalar, ColMajor> m_StrMatTrans; // The transpose pattern of the input matrix
|
||||
mutable bool m_hasTranspose; // The transpose of the current matrix has already been computed
|
||||
mutable int m_comm; // The MPI communicator identifier
|
||||
mutable Matrix<Index,IPARM_SIZE,1> m_iparm; // integer vector for the input parameters
|
||||
mutable Matrix<int,IPARM_SIZE,1> m_iparm; // integer vector for the input parameters
|
||||
mutable Matrix<double,DPARM_SIZE,1> m_dparm; // Scalar vector for the input parameters
|
||||
mutable Matrix<Index,Dynamic,1> m_perm; // Permutation vector
|
||||
mutable Matrix<Index,Dynamic,1> m_invp; // Inverse permutation vector
|
||||
mutable int m_ordering; // ordering method to use
|
||||
mutable int m_amalgamation; // level of amalgamation
|
||||
mutable int m_size; // Size of the matrix
|
||||
|
||||
private:
|
||||
PastixBase(PastixBase& ) {}
|
||||
|
||||
};
|
||||
|
||||
/** Initialize the PaStiX data structure.
|
||||
@ -348,29 +312,29 @@ class PastixBase
|
||||
* \sa iparm() dparm()
|
||||
*/
|
||||
template <class Derived>
|
||||
void PastixBase<Derived>::PastixInit()
|
||||
void PastixBase<Derived>::init()
|
||||
{
|
||||
m_size = 0;
|
||||
m_iparm.resize(IPARM_SIZE);
|
||||
m_dparm.resize(DPARM_SIZE);
|
||||
m_iparm.setZero(IPARM_SIZE);
|
||||
m_dparm.setZero(DPARM_SIZE);
|
||||
|
||||
m_iparm(IPARM_MODIFY_PARAMETER) = API_NO;
|
||||
if(m_pastixdata)
|
||||
{ // This trick is used to reset the Pastix internal data between successive
|
||||
// calls with (structural) different matrices
|
||||
PastixDestroy();
|
||||
m_pastixdata = 0;
|
||||
m_iparm(IPARM_MODIFY_PARAMETER) = API_YES;
|
||||
m_hasTranspose = false;
|
||||
}
|
||||
pastix(&m_pastixdata, MPI_COMM_WORLD,
|
||||
0, 0, 0, 0,
|
||||
0, 0, 0, 1, m_iparm.data(), m_dparm.data());
|
||||
|
||||
m_iparm[IPARM_MATRIX_VERIFICATION] = API_NO;
|
||||
m_iparm[IPARM_VERBOSE] = 2;
|
||||
m_iparm[IPARM_ORDERING] = API_ORDER_SCOTCH;
|
||||
m_iparm[IPARM_INCOMPLETE] = API_NO;
|
||||
m_iparm[IPARM_OOC_LIMIT] = 2000;
|
||||
m_iparm[IPARM_RHS_MAKING] = API_RHS_B;
|
||||
m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO;
|
||||
|
||||
m_iparm(IPARM_START_TASK) = API_TASK_INIT;
|
||||
m_iparm(IPARM_END_TASK) = API_TASK_INIT;
|
||||
m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO;
|
||||
internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, m_mat_null.outerIndexPtr(), m_mat_null.innerIndexPtr(),
|
||||
m_mat_null.valuePtr(), m_perm.data(), m_invp.data(), m_vec_null.data(), 1, m_iparm.data(), m_dparm.data());
|
||||
|
||||
m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO;
|
||||
internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar*)0,
|
||||
0, 0, 0, 0, m_iparm.data(), m_dparm.data());
|
||||
|
||||
// Check the returned error
|
||||
if(m_iparm(IPARM_ERROR_NUMBER)) {
|
||||
@ -384,82 +348,74 @@ void PastixBase<Derived>::PastixInit()
|
||||
}
|
||||
|
||||
template <class Derived>
|
||||
Derived& PastixBase<Derived>::compute(MatrixType& mat)
|
||||
void PastixBase<Derived>::compute(ColSpMatrix& mat)
|
||||
{
|
||||
eigen_assert(mat.rows() == mat.cols() && "The input matrix should be squared");
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
|
||||
// Save the size of the current matrix
|
||||
m_size = mat.rows();
|
||||
// Convert the matrix in fortran-style numbering
|
||||
internal::EigenToFortranNumbering(mat);
|
||||
analyzePattern(mat);
|
||||
analyzePattern(mat);
|
||||
factorize(mat);
|
||||
|
||||
m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO;
|
||||
if (m_factorizationIsOk) m_isInitialized = true;
|
||||
|
||||
//Convert back the matrix -- Is it really necessary here
|
||||
internal::EigenToCNumbering(mat);
|
||||
|
||||
return derived();
|
||||
m_isInitialized = m_factorizationIsOk;
|
||||
}
|
||||
|
||||
|
||||
template <class Derived>
|
||||
Derived& PastixBase<Derived>::analyzePattern(MatrixType& mat)
|
||||
{
|
||||
eigen_assert(m_initisOk && "PastixInit should be called first to set the default parameters");
|
||||
void PastixBase<Derived>::analyzePattern(ColSpMatrix& mat)
|
||||
{
|
||||
eigen_assert(m_initisOk && "The initialization of PaSTiX failed");
|
||||
|
||||
// clean previous calls
|
||||
if(m_size>0)
|
||||
clean();
|
||||
|
||||
m_size = mat.rows();
|
||||
m_perm.resize(m_size);
|
||||
m_invp.resize(m_size);
|
||||
|
||||
// Convert the matrix in fortran-style numbering
|
||||
internal::EigenToFortranNumbering(mat);
|
||||
|
||||
m_iparm(IPARM_START_TASK) = API_TASK_ORDERING;
|
||||
m_iparm(IPARM_END_TASK) = API_TASK_ANALYSE;
|
||||
|
||||
internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(),
|
||||
mat.valuePtr(), m_perm.data(), m_invp.data(), m_vec_null.data(), 0, m_iparm.data(), m_dparm.data());
|
||||
mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data());
|
||||
|
||||
// Check the returned error
|
||||
if(m_iparm(IPARM_ERROR_NUMBER)) {
|
||||
if(m_iparm(IPARM_ERROR_NUMBER))
|
||||
{
|
||||
m_info = NumericalIssue;
|
||||
m_analysisIsOk = false;
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
m_info = Success;
|
||||
m_analysisIsOk = true;
|
||||
}
|
||||
return derived();
|
||||
}
|
||||
|
||||
template <class Derived>
|
||||
Derived& PastixBase<Derived>::factorize(MatrixType& mat)
|
||||
void PastixBase<Derived>::factorize(ColSpMatrix& mat)
|
||||
{
|
||||
// if(&m_cpyMat != &mat) m_cpyMat = mat;
|
||||
eigen_assert(m_analysisIsOk && "The analysis phase should be called before the factorization phase");
|
||||
m_iparm(IPARM_START_TASK) = API_TASK_NUMFACT;
|
||||
m_iparm(IPARM_END_TASK) = API_TASK_NUMFACT;
|
||||
m_size = mat.rows();
|
||||
|
||||
// Convert the matrix in fortran-style numbering
|
||||
internal::EigenToFortranNumbering(mat);
|
||||
|
||||
internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(),
|
||||
mat.valuePtr(), m_perm.data(), m_invp.data(), m_vec_null.data(), 0, m_iparm.data(), m_dparm.data());
|
||||
mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data());
|
||||
|
||||
// Check the returned error
|
||||
if(m_iparm(IPARM_ERROR_NUMBER)) {
|
||||
if(m_iparm(IPARM_ERROR_NUMBER))
|
||||
{
|
||||
m_info = NumericalIssue;
|
||||
m_factorizationIsOk = false;
|
||||
m_isInitialized = false;
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
m_info = Success;
|
||||
m_factorizationIsOk = true;
|
||||
m_isInitialized = true;
|
||||
}
|
||||
return derived();
|
||||
}
|
||||
|
||||
/* Solve the system */
|
||||
@ -475,20 +431,17 @@ bool PastixBase<Base>::_solve (const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) co
|
||||
x = b; /* on return, x is overwritten by the computed solution */
|
||||
|
||||
for (int i = 0; i < b.cols(); i++){
|
||||
m_iparm(IPARM_START_TASK) = API_TASK_SOLVE;
|
||||
m_iparm(IPARM_END_TASK) = API_TASK_REFINE;
|
||||
m_iparm(IPARM_RHS_MAKING) = API_RHS_B;
|
||||
internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, x.rows(), m_mat_null.outerIndexPtr(), m_mat_null.innerIndexPtr(),
|
||||
m_mat_null.valuePtr(), m_perm.data(), m_invp.data(), &x(0, i), rhs, m_iparm.data(), m_dparm.data());
|
||||
m_iparm[IPARM_START_TASK] = API_TASK_SOLVE;
|
||||
m_iparm[IPARM_END_TASK] = API_TASK_REFINE;
|
||||
|
||||
internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, x.rows(), 0, 0, 0,
|
||||
m_perm.data(), m_invp.data(), &x(0, i), rhs, m_iparm.data(), m_dparm.data());
|
||||
}
|
||||
|
||||
// Check the returned error
|
||||
if(m_iparm(IPARM_ERROR_NUMBER)) {
|
||||
m_info = NumericalIssue;
|
||||
return false;
|
||||
}
|
||||
else {
|
||||
return true;
|
||||
}
|
||||
m_info = m_iparm(IPARM_ERROR_NUMBER)==0 ? Success : NumericalIssue;
|
||||
|
||||
return m_iparm(IPARM_ERROR_NUMBER)==0;
|
||||
}
|
||||
|
||||
/** \ingroup PaStiXSupport_Module
|
||||
@ -516,14 +469,18 @@ class PastixLU : public PastixBase< PastixLU<_MatrixType> >
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef PastixBase<PastixLU<MatrixType> > Base;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef SparseMatrix<Scalar, ColMajor> PaStiXType;
|
||||
typedef typename Base::ColSpMatrix ColSpMatrix;
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
||||
public:
|
||||
PastixLU():Base() {}
|
||||
PastixLU() : Base()
|
||||
{
|
||||
init();
|
||||
}
|
||||
|
||||
PastixLU(const MatrixType& matrix):Base()
|
||||
{
|
||||
init();
|
||||
compute(matrix);
|
||||
}
|
||||
/** Compute the LU supernodal factorization of \p matrix.
|
||||
@ -533,18 +490,9 @@ class PastixLU : public PastixBase< PastixLU<_MatrixType> >
|
||||
*/
|
||||
void compute (const MatrixType& matrix)
|
||||
{
|
||||
// Pastix supports only column-major matrices with a symmetric pattern
|
||||
Base::PastixInit();
|
||||
PaStiXType temp(matrix.rows(), matrix.cols());
|
||||
// Symmetrize the graph of the matrix
|
||||
if (IsStrSym)
|
||||
temp = matrix;
|
||||
else
|
||||
{
|
||||
internal::EigenSymmetrizeMatrixGraph<PaStiXType>(matrix, temp, m_StrMatTrans, m_hasTranspose);
|
||||
}
|
||||
m_iparm[IPARM_SYM] = API_SYM_NO;
|
||||
m_iparm(IPARM_FACTORIZATION) = API_FACT_LU;
|
||||
m_structureIsUptodate = false;
|
||||
ColSpMatrix temp;
|
||||
grabMatrix(matrix, temp);
|
||||
Base::compute(temp);
|
||||
}
|
||||
/** Compute the LU symbolic factorization of \p matrix using its sparsity pattern.
|
||||
@ -554,20 +502,9 @@ class PastixLU : public PastixBase< PastixLU<_MatrixType> >
|
||||
*/
|
||||
void analyzePattern(const MatrixType& matrix)
|
||||
{
|
||||
|
||||
Base::PastixInit();
|
||||
/* Pastix supports only column-major matrices with symmetrized patterns */
|
||||
SparseMatrix<Scalar, ColMajor> temp(matrix.rows(), matrix.cols());
|
||||
// Symmetrize the graph of the matrix
|
||||
if (IsStrSym)
|
||||
temp = matrix;
|
||||
else
|
||||
{
|
||||
internal::EigenSymmetrizeMatrixGraph<PaStiXType>(matrix, temp, m_StrMatTrans,m_hasTranspose);
|
||||
}
|
||||
|
||||
m_iparm(IPARM_SYM) = API_SYM_NO;
|
||||
m_iparm(IPARM_FACTORIZATION) = API_FACT_LU;
|
||||
m_structureIsUptodate = false;
|
||||
ColSpMatrix temp;
|
||||
grabMatrix(matrix, temp);
|
||||
Base::analyzePattern(temp);
|
||||
}
|
||||
|
||||
@ -578,27 +515,48 @@ class PastixLU : public PastixBase< PastixLU<_MatrixType> >
|
||||
*/
|
||||
void factorize(const MatrixType& matrix)
|
||||
{
|
||||
/* Pastix supports only column-major matrices with symmetrized patterns */
|
||||
SparseMatrix<Scalar, ColMajor> temp(matrix.rows(), matrix.cols());
|
||||
// Symmetrize the graph of the matrix
|
||||
if (IsStrSym)
|
||||
temp = matrix;
|
||||
else
|
||||
{
|
||||
internal::EigenSymmetrizeMatrixGraph<PaStiXType>(matrix, temp, m_StrMatTrans,m_hasTranspose);
|
||||
}
|
||||
m_iparm(IPARM_SYM) = API_SYM_NO;
|
||||
m_iparm(IPARM_FACTORIZATION) = API_FACT_LU;
|
||||
ColSpMatrix temp;
|
||||
grabMatrix(matrix, temp);
|
||||
Base::factorize(temp);
|
||||
}
|
||||
protected:
|
||||
|
||||
void init()
|
||||
{
|
||||
m_structureIsUptodate = false;
|
||||
m_iparm(IPARM_SYM) = API_SYM_NO;
|
||||
m_iparm(IPARM_FACTORIZATION) = API_FACT_LU;
|
||||
}
|
||||
|
||||
void grabMatrix(const MatrixType& matrix, ColSpMatrix& out)
|
||||
{
|
||||
if(IsStrSym)
|
||||
out = matrix;
|
||||
else
|
||||
{
|
||||
if(!m_structureIsUptodate)
|
||||
{
|
||||
// update the transposed structure
|
||||
m_transposedStructure = matrix.transpose();
|
||||
|
||||
// Set the elements of the matrix to zero
|
||||
for (Index j=0; j<m_transposedStructure.outerSize(); ++j)
|
||||
for(typename ColSpMatrix::InnerIterator it(m_transposedStructure, j); it; ++it)
|
||||
it.valueRef() = 0.0;
|
||||
|
||||
m_structureIsUptodate = true;
|
||||
}
|
||||
|
||||
out = m_transposedStructure + matrix;
|
||||
}
|
||||
internal::c_to_fortran_numbering(out);
|
||||
}
|
||||
|
||||
using Base::m_iparm;
|
||||
using Base::m_dparm;
|
||||
using Base::m_StrMatTrans;
|
||||
using Base::m_hasTranspose;
|
||||
|
||||
private:
|
||||
PastixLU(PastixLU& ) {}
|
||||
ColSpMatrix m_transposedStructure;
|
||||
bool m_structureIsUptodate;
|
||||
};
|
||||
|
||||
/** \ingroup PaStiXSupport_Module
|
||||
@ -621,15 +579,18 @@ class PastixLLT : public PastixBase< PastixLLT<_MatrixType, _UpLo> >
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef PastixBase<PastixLLT<MatrixType, _UpLo> > Base;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename Base::ColSpMatrix ColSpMatrix;
|
||||
|
||||
public:
|
||||
enum { UpLo = _UpLo };
|
||||
PastixLLT():Base() {}
|
||||
PastixLLT() : Base()
|
||||
{
|
||||
init();
|
||||
}
|
||||
|
||||
PastixLLT(const MatrixType& matrix):Base()
|
||||
{
|
||||
init();
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
@ -638,13 +599,8 @@ class PastixLLT : public PastixBase< PastixLLT<_MatrixType, _UpLo> >
|
||||
*/
|
||||
void compute (const MatrixType& matrix)
|
||||
{
|
||||
// Pastix supports only lower, column-major matrices
|
||||
Base::PastixInit(); // This is necessary to let PaStiX initialize its data structure between successive calls to compute
|
||||
SparseMatrix<Scalar, ColMajor> temp(matrix.rows(), matrix.cols());
|
||||
PermutationMatrix<Dynamic,Dynamic,Index> pnull;
|
||||
temp.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>().twistedBy(pnull);
|
||||
m_iparm(IPARM_SYM) = API_SYM_YES;
|
||||
m_iparm(IPARM_FACTORIZATION) = API_FACT_LLT;
|
||||
ColSpMatrix temp;
|
||||
grabMatrix(matrix, temp);
|
||||
Base::compute(temp);
|
||||
}
|
||||
|
||||
@ -654,13 +610,8 @@ class PastixLLT : public PastixBase< PastixLLT<_MatrixType, _UpLo> >
|
||||
*/
|
||||
void analyzePattern(const MatrixType& matrix)
|
||||
{
|
||||
Base::PastixInit();
|
||||
// Pastix supports only lower, column-major matrices
|
||||
SparseMatrix<Scalar, ColMajor> temp(matrix.rows(), matrix.cols());
|
||||
PermutationMatrix<Dynamic,Dynamic,Index> pnull;
|
||||
temp.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>().twistedBy(pnull);
|
||||
m_iparm(IPARM_SYM) = API_SYM_YES;
|
||||
m_iparm(IPARM_FACTORIZATION) = API_FACT_LLT;
|
||||
ColSpMatrix temp;
|
||||
grabMatrix(matrix, temp);
|
||||
Base::analyzePattern(temp);
|
||||
}
|
||||
/** Compute the LL^T supernodal numerical factorization of \p matrix
|
||||
@ -668,19 +619,25 @@ class PastixLLT : public PastixBase< PastixLLT<_MatrixType, _UpLo> >
|
||||
*/
|
||||
void factorize(const MatrixType& matrix)
|
||||
{
|
||||
// Pastix supports only lower, column-major matrices
|
||||
SparseMatrix<Scalar, ColMajor> temp(matrix.rows(), matrix.cols());
|
||||
PermutationMatrix<Dynamic,Dynamic,Index> pnull;
|
||||
temp.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>().twistedBy(pnull);
|
||||
m_iparm(IPARM_SYM) = API_SYM_YES;
|
||||
m_iparm(IPARM_FACTORIZATION) = API_FACT_LLT;
|
||||
ColSpMatrix temp;
|
||||
grabMatrix(matrix, temp);
|
||||
Base::factorize(temp);
|
||||
}
|
||||
protected:
|
||||
using Base::m_iparm;
|
||||
|
||||
private:
|
||||
PastixLLT(PastixLLT& ) {}
|
||||
void init()
|
||||
{
|
||||
m_iparm(IPARM_SYM) = API_SYM_YES;
|
||||
m_iparm(IPARM_FACTORIZATION) = API_FACT_LLT;
|
||||
}
|
||||
|
||||
void grabMatrix(const MatrixType& matrix, ColSpMatrix& out)
|
||||
{
|
||||
// Pastix supports only lower, column-major matrices
|
||||
out.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>();
|
||||
internal::c_to_fortran_numbering(out);
|
||||
}
|
||||
};
|
||||
|
||||
/** \ingroup PaStiXSupport_Module
|
||||
@ -700,18 +657,21 @@ class PastixLLT : public PastixBase< PastixLLT<_MatrixType, _UpLo> >
|
||||
template<typename _MatrixType, int _UpLo>
|
||||
class PastixLDLT : public PastixBase< PastixLDLT<_MatrixType, _UpLo> >
|
||||
{
|
||||
public:
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef PastixBase<PastixLDLT<MatrixType, _UpLo> > Base;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename Base::ColSpMatrix ColSpMatrix;
|
||||
|
||||
public:
|
||||
enum { UpLo = _UpLo };
|
||||
PastixLDLT():Base() {}
|
||||
PastixLDLT():Base()
|
||||
{
|
||||
init();
|
||||
}
|
||||
|
||||
PastixLDLT(const MatrixType& matrix):Base()
|
||||
{
|
||||
init();
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
@ -720,13 +680,8 @@ public:
|
||||
*/
|
||||
void compute (const MatrixType& matrix)
|
||||
{
|
||||
Base::PastixInit();
|
||||
// Pastix supports only lower, column-major matrices
|
||||
SparseMatrix<Scalar, ColMajor> temp(matrix.rows(), matrix.cols());
|
||||
PermutationMatrix<Dynamic,Dynamic,Index> pnull;
|
||||
temp.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>().twistedBy(pnull);
|
||||
m_iparm(IPARM_SYM) = API_SYM_YES;
|
||||
m_iparm(IPARM_FACTORIZATION) = API_FACT_LDLT;
|
||||
ColSpMatrix temp;
|
||||
grabMatrix(matrix, temp);
|
||||
Base::compute(temp);
|
||||
}
|
||||
|
||||
@ -736,14 +691,8 @@ public:
|
||||
*/
|
||||
void analyzePattern(const MatrixType& matrix)
|
||||
{
|
||||
Base::PastixInit();
|
||||
// Pastix supports only lower, column-major matrices
|
||||
SparseMatrix<Scalar, ColMajor> temp(matrix.rows(), matrix.cols());
|
||||
PermutationMatrix<Dynamic,Dynamic,Index> pnull;
|
||||
temp.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>().twistedBy(pnull);
|
||||
|
||||
m_iparm(IPARM_SYM) = API_SYM_YES;
|
||||
m_iparm(IPARM_FACTORIZATION) = API_FACT_LDLT;
|
||||
ColSpMatrix temp;
|
||||
grabMatrix(matrix, temp);
|
||||
Base::analyzePattern(temp);
|
||||
}
|
||||
/** Compute the LDL^T supernodal numerical factorization of \p matrix
|
||||
@ -751,21 +700,26 @@ public:
|
||||
*/
|
||||
void factorize(const MatrixType& matrix)
|
||||
{
|
||||
// Pastix supports only lower, column-major matrices
|
||||
SparseMatrix<Scalar, ColMajor> temp(matrix.rows(), matrix.cols());
|
||||
PermutationMatrix<Dynamic,Dynamic,Index> pnull;
|
||||
temp.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>().twistedBy(pnull);
|
||||
|
||||
m_iparm(IPARM_SYM) = API_SYM_YES;
|
||||
m_iparm(IPARM_FACTORIZATION) = API_FACT_LDLT;
|
||||
ColSpMatrix temp;
|
||||
grabMatrix(matrix, temp);
|
||||
Base::factorize(temp);
|
||||
}
|
||||
|
||||
protected:
|
||||
using Base::m_iparm;
|
||||
|
||||
private:
|
||||
PastixLDLT(PastixLDLT& ) {}
|
||||
void init()
|
||||
{
|
||||
m_iparm(IPARM_SYM) = API_SYM_YES;
|
||||
m_iparm(IPARM_FACTORIZATION) = API_FACT_LDLT;
|
||||
}
|
||||
|
||||
void grabMatrix(const MatrixType& matrix, ColSpMatrix& out)
|
||||
{
|
||||
// Pastix supports only lower, column-major matrices
|
||||
out.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>();
|
||||
internal::c_to_fortran_numbering(out);
|
||||
}
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
Loading…
Reference in New Issue
Block a user