mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-02-23 18:20:47 +08:00
generateTestMatrix can use processTriangularMatrix
This commit is contained in:
parent
b8f0364a1c
commit
9be658f701
@ -10,27 +10,48 @@
|
||||
#include "main.h"
|
||||
#include <unsupported/Eigen/MatrixFunctions>
|
||||
|
||||
// For complex matrices, any matrix is fine.
|
||||
template<typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
|
||||
struct processTriangularMatrix
|
||||
{
|
||||
static void run(MatrixType&, MatrixType&, const MatrixType&)
|
||||
{ }
|
||||
};
|
||||
|
||||
// For real matrices, make sure none of the eigenvalues are negative.
|
||||
template<typename MatrixType>
|
||||
struct processTriangularMatrix<MatrixType,0>
|
||||
{
|
||||
static void run(MatrixType& m, MatrixType& T, const MatrixType& U)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
const Index size = m.cols();
|
||||
|
||||
for (Index i=0; i < size; ++i) {
|
||||
if (i == size - 1 || T.coeff(i+1,i) == 0)
|
||||
T.coeffRef(i,i) = std::abs(T.coeff(i,i));
|
||||
else
|
||||
++i;
|
||||
}
|
||||
m = U * T * U.transpose();
|
||||
}
|
||||
};
|
||||
|
||||
template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
|
||||
struct generateTestMatrix;
|
||||
|
||||
// for real matrices, make sure none of the eigenvalues are negative
|
||||
template <typename MatrixType>
|
||||
struct generateTestMatrix<MatrixType,0>
|
||||
{
|
||||
static void run(MatrixType& result, typename MatrixType::Index size)
|
||||
{
|
||||
MatrixType mat = MatrixType::Random(size, size);
|
||||
EigenSolver<MatrixType> es(mat);
|
||||
typename EigenSolver<MatrixType>::EigenvalueType eivals = es.eigenvalues();
|
||||
for (typename MatrixType::Index i = 0; i < size; ++i) {
|
||||
if (eivals(i).imag() == 0 && eivals(i).real() < 0)
|
||||
eivals(i) = -eivals(i);
|
||||
}
|
||||
result = (es.eigenvectors() * eivals.asDiagonal() * es.eigenvectors().inverse()).real();
|
||||
result = MatrixType::Random(size, size);
|
||||
RealSchur<MatrixType> schur(result);
|
||||
MatrixType T = schur.matrixT();
|
||||
processTriangularMatrix<MatrixType>::run(result, T, schur.matrixU());
|
||||
}
|
||||
};
|
||||
|
||||
// for complex matrices, any matrix is fine
|
||||
template <typename MatrixType>
|
||||
struct generateTestMatrix<MatrixType,1>
|
||||
{
|
||||
|
@ -96,33 +96,6 @@ void testGeneral(const MatrixType& m, double tol)
|
||||
}
|
||||
}
|
||||
|
||||
// For complex matrices, any matrix is fine.
|
||||
template<typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
|
||||
struct processTriangularMatrix
|
||||
{
|
||||
static void run(MatrixType&, MatrixType&, const MatrixType&)
|
||||
{ }
|
||||
};
|
||||
|
||||
// For real matrices, make sure none of the eigenvalues are negative.
|
||||
template<typename MatrixType>
|
||||
struct processTriangularMatrix<MatrixType,0>
|
||||
{
|
||||
static void run(MatrixType& m, MatrixType& T, const MatrixType& U)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
const Index size = m.cols();
|
||||
|
||||
for (Index i=0; i < size; ++i) {
|
||||
if (i == size - 1 || T.coeff(i+1,i) == 0)
|
||||
T.coeffRef(i,i) = std::abs(T.coeff(i,i));
|
||||
else
|
||||
++i;
|
||||
}
|
||||
m = U * T * U.adjoint();
|
||||
}
|
||||
};
|
||||
|
||||
template<typename MatrixType>
|
||||
void testSingular(MatrixType m, double tol)
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user