mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-03-01 18:26:24 +08:00
Update benchmark for dense solver to stress least-squares pb, and to output a HTML table
This commit is contained in:
parent
72950effdf
commit
9b76be9d21
@ -2,47 +2,74 @@
|
||||
#include "BenchTimer.h"
|
||||
#include <Eigen/Dense>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <sstream>
|
||||
using namespace Eigen;
|
||||
|
||||
std::map<std::string,Array<float,1,4> > results;
|
||||
std::map<std::string,Array<float,1,8,DontAlign|RowMajor> > results;
|
||||
std::vector<std::string> labels;
|
||||
std::vector<Array2i> sizes;
|
||||
|
||||
template<typename Solver,typename MatrixType>
|
||||
EIGEN_DONT_INLINE
|
||||
void compute_norm_equation(Solver &solver, const MatrixType &A) {
|
||||
if(A.rows()!=A.cols())
|
||||
solver.compute(A.transpose()*A);
|
||||
else
|
||||
solver.compute(A);
|
||||
}
|
||||
|
||||
template<typename Solver,typename MatrixType>
|
||||
EIGEN_DONT_INLINE
|
||||
void compute(Solver &solver, const MatrixType &A) {
|
||||
solver.compute(A);
|
||||
}
|
||||
|
||||
template<typename Scalar,int Size>
|
||||
void bench(int id, int size = Size)
|
||||
void bench(int id, int rows, int size = Size)
|
||||
{
|
||||
typedef Matrix<Scalar,Size,Size> Mat;
|
||||
Mat A(size,size);
|
||||
typedef Matrix<Scalar,Dynamic,Size> Mat;
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> MatDyn;
|
||||
typedef Matrix<Scalar,Size,Size> MatSquare;
|
||||
Mat A(rows,size);
|
||||
A.setRandom();
|
||||
A = A*A.adjoint();
|
||||
if(rows==size)
|
||||
A = A*A.adjoint();
|
||||
BenchTimer t_llt, t_ldlt, t_lu, t_fplu, t_qr, t_cpqr, t_cod, t_fpqr, t_jsvd, t_bdcsvd;
|
||||
|
||||
int svd_opt = ComputeThinU|ComputeThinV;
|
||||
|
||||
int tries = 3;
|
||||
int tries = 5;
|
||||
int rep = 1000/size;
|
||||
if(rep==0) rep = 1;
|
||||
// rep = rep*rep;
|
||||
|
||||
LLT<Mat> llt(A);
|
||||
LDLT<Mat> ldlt(A);
|
||||
PartialPivLU<Mat> lu(A);
|
||||
FullPivLU<Mat> fplu(A);
|
||||
HouseholderQR<Mat> qr(A);
|
||||
ColPivHouseholderQR<Mat> cpqr(A);
|
||||
CompleteOrthogonalDecomposition<Mat> cod(A);
|
||||
FullPivHouseholderQR<Mat> fpqr(A);
|
||||
JacobiSVD<Mat> jsvd(A.rows(),A.cols());
|
||||
BDCSVD<Mat> bdcsvd(A.rows(),A.cols());
|
||||
LLT<MatSquare> llt(size);
|
||||
LDLT<MatSquare> ldlt(size);
|
||||
PartialPivLU<MatSquare> lu(size);
|
||||
FullPivLU<MatSquare> fplu(size,size);
|
||||
HouseholderQR<Mat> qr(A.rows(),A.cols());
|
||||
ColPivHouseholderQR<Mat> cpqr(A.rows(),A.cols());
|
||||
CompleteOrthogonalDecomposition<Mat> cod(A.rows(),A.cols());
|
||||
FullPivHouseholderQR<Mat> fpqr(A.rows(),A.cols());
|
||||
JacobiSVD<MatDyn> jsvd(A.rows(),A.cols());
|
||||
BDCSVD<MatDyn> bdcsvd(A.rows(),A.cols());
|
||||
|
||||
BENCH(t_llt, tries, rep, llt.compute(A));
|
||||
BENCH(t_ldlt, tries, rep, ldlt.compute(A));
|
||||
BENCH(t_lu, tries, rep, lu.compute(A));
|
||||
BENCH(t_fplu, tries, rep, fplu.compute(A));
|
||||
BENCH(t_qr, tries, rep, qr.compute(A));
|
||||
BENCH(t_cpqr, tries, rep, cpqr.compute(A));
|
||||
BENCH(t_cod, tries, rep, cod.compute(A));
|
||||
BENCH(t_fpqr, tries, rep, fpqr.compute(A));
|
||||
BENCH(t_llt, tries, rep, compute_norm_equation(llt,A));
|
||||
BENCH(t_ldlt, tries, rep, compute_norm_equation(ldlt,A));
|
||||
BENCH(t_lu, tries, rep, compute_norm_equation(lu,A));
|
||||
if(size<=1000)
|
||||
BENCH(t_fplu, tries, rep, compute_norm_equation(fplu,A));
|
||||
BENCH(t_qr, tries, rep, compute(qr,A));
|
||||
BENCH(t_cpqr, tries, rep, compute(cpqr,A));
|
||||
BENCH(t_cod, tries, rep, compute(cod,A));
|
||||
if(size*rows<=10000000)
|
||||
BENCH(t_fpqr, tries, rep, compute(fpqr,A));
|
||||
if(size<500) // JacobiSVD is really too slow for too large matrices
|
||||
BENCH(t_jsvd, tries, rep, jsvd.compute(A,ComputeFullU|ComputeFullV));
|
||||
BENCH(t_bdcsvd, tries, rep, bdcsvd.compute(A,ComputeFullU|ComputeFullV));
|
||||
BENCH(t_jsvd, tries, rep, jsvd.compute(A,svd_opt));
|
||||
// if(size*rows<=20000000)
|
||||
BENCH(t_bdcsvd, tries, rep, bdcsvd.compute(A,svd_opt));
|
||||
|
||||
results["LLT"][id] = t_llt.best();
|
||||
results["LDLT"][id] = t_ldlt.best();
|
||||
@ -52,33 +79,108 @@ void bench(int id, int size = Size)
|
||||
results["ColPivHouseholderQR"][id] = t_cpqr.best();
|
||||
results["CompleteOrthogonalDecomposition"][id] = t_cod.best();
|
||||
results["FullPivHouseholderQR"][id] = t_fpqr.best();
|
||||
results["JacobiSVD"][id] = size<500 ? t_jsvd.best() : 0;
|
||||
results["JacobiSVD"][id] = t_jsvd.best();
|
||||
results["BDCSVD"][id] = t_bdcsvd.best();
|
||||
}
|
||||
|
||||
|
||||
int main()
|
||||
{
|
||||
labels.push_back("LLT");
|
||||
labels.push_back("LDLT");
|
||||
labels.push_back("PartialPivLU");
|
||||
labels.push_back("FullPivLU");
|
||||
labels.push_back("HouseholderQR");
|
||||
labels.push_back("ColPivHouseholderQR");
|
||||
labels.push_back("CompleteOrthogonalDecomposition");
|
||||
labels.push_back("FullPivHouseholderQR");
|
||||
labels.push_back("JacobiSVD");
|
||||
labels.push_back("BDCSVD");
|
||||
|
||||
for(int i=0; i<labels.size(); ++i)
|
||||
results[labels[i]].fill(-1);
|
||||
|
||||
const int small = 8;
|
||||
const int medium = 100;
|
||||
const int large = 1000;
|
||||
const int xl = 4000;
|
||||
|
||||
bench<float,small>(0);
|
||||
bench<float,Dynamic>(1,medium);
|
||||
bench<float,Dynamic>(2,large);
|
||||
bench<float,Dynamic>(3,xl);
|
||||
|
||||
IOFormat fmt(3, 0, " \t", "\n", "", "");
|
||||
|
||||
std::cout << "solver/size " << small << "\t" << medium << "\t" << large << "\t" << xl << "\n";
|
||||
std::cout << "LLT (ms) " << (results["LLT"]/1000.).format(fmt) << "\n";
|
||||
std::cout << "LDLT (%) " << (results["LDLT"]/results["LLT"]).format(fmt) << "\n";
|
||||
std::cout << "PartialPivLU (%) " << (results["PartialPivLU"]/results["LLT"]).format(fmt) << "\n";
|
||||
std::cout << "FullPivLU (%) " << (results["FullPivLU"]/results["LLT"]).format(fmt) << "\n";
|
||||
std::cout << "HouseholderQR (%) " << (results["HouseholderQR"]/results["LLT"]).format(fmt) << "\n";
|
||||
std::cout << "ColPivHouseholderQR (%) " << (results["ColPivHouseholderQR"]/results["LLT"]).format(fmt) << "\n";
|
||||
std::cout << "CompleteOrthogonalDecomposition (%) " << (results["CompleteOrthogonalDecomposition"]/results["LLT"]).format(fmt) << "\n";
|
||||
std::cout << "FullPivHouseholderQR (%) " << (results["FullPivHouseholderQR"]/results["LLT"]).format(fmt) << "\n";
|
||||
std::cout << "JacobiSVD (%) " << (results["JacobiSVD"]/results["LLT"]).format(fmt) << "\n";
|
||||
std::cout << "BDCSVD (%) " << (results["BDCSVD"]/results["LLT"]).format(fmt) << "\n";
|
||||
sizes.push_back(Array2i(small,small));
|
||||
sizes.push_back(Array2i(100,100));
|
||||
sizes.push_back(Array2i(1000,1000));
|
||||
sizes.push_back(Array2i(4000,4000));
|
||||
sizes.push_back(Array2i(10000,small));
|
||||
sizes.push_back(Array2i(10000,100));
|
||||
sizes.push_back(Array2i(10000,1000));
|
||||
sizes.push_back(Array2i(10000,4000));
|
||||
|
||||
using namespace std;
|
||||
|
||||
for(int k=0; k<sizes.size(); ++k)
|
||||
{
|
||||
cout << sizes[k](0) << "x" << sizes[k](1) << "...\n";
|
||||
bench<float,Dynamic>(k,sizes[k](0),sizes[k](1));
|
||||
}
|
||||
|
||||
cout.width(32);
|
||||
cout << "solver/size";
|
||||
cout << " ";
|
||||
for(int k=0; k<sizes.size(); ++k)
|
||||
{
|
||||
std::stringstream ss;
|
||||
ss << sizes[k](0) << "x" << sizes[k](1);
|
||||
cout.width(10); cout << ss.str(); cout << " ";
|
||||
}
|
||||
cout << endl;
|
||||
|
||||
|
||||
for(int i=0; i<labels.size(); ++i)
|
||||
{
|
||||
cout.width(32); cout << labels[i]; cout << " ";
|
||||
ArrayXf r = (results[labels[i]]*100000.f).floor()/100.f;
|
||||
for(int k=0; k<sizes.size(); ++k)
|
||||
{
|
||||
cout.width(10);
|
||||
if(r(k)>=1e6) cout << "-";
|
||||
else cout << r(k);
|
||||
cout << " ";
|
||||
}
|
||||
cout << endl;
|
||||
}
|
||||
|
||||
// HTML output
|
||||
cout << "<table class=\"manual\">" << endl;
|
||||
cout << "<tr><th>solver/size</th>" << endl;
|
||||
for(int k=0; k<sizes.size(); ++k)
|
||||
cout << " <th>" << sizes[k](0) << "x" << sizes[k](1) << "</th>";
|
||||
cout << "</tr>" << endl;
|
||||
for(int i=0; i<labels.size(); ++i)
|
||||
{
|
||||
cout << "<tr";
|
||||
if(i%2==1) cout << " class=\"alt\"";
|
||||
cout << "><td>" << labels[i] << "</td>";
|
||||
ArrayXf r = (results[labels[i]]*100000.f).floor()/100.f;
|
||||
for(int k=0; k<sizes.size(); ++k)
|
||||
{
|
||||
if(r(k)>=1e6) cout << "<td>-</td>";
|
||||
else
|
||||
{
|
||||
cout << "<td>" << r(k);
|
||||
if(i>0)
|
||||
cout << " (x" << numext::round(10.f*results[labels[i]](k)/results["LLT"](k))/10.f << ")";
|
||||
if(i<4 && sizes[k](0)!=sizes[k](1))
|
||||
cout << " <sup><a href=\"#note_ls\">*</a></sup>";
|
||||
cout << "</td>";
|
||||
}
|
||||
}
|
||||
cout << "</tr>" << endl;
|
||||
}
|
||||
cout << "</table>" << endl;
|
||||
|
||||
// cout << "LLT (ms) " << (results["LLT"]*1000.).format(fmt) << "\n";
|
||||
// cout << "LDLT (%) " << (results["LDLT"]/results["LLT"]).format(fmt) << "\n";
|
||||
// cout << "PartialPivLU (%) " << (results["PartialPivLU"]/results["LLT"]).format(fmt) << "\n";
|
||||
// cout << "FullPivLU (%) " << (results["FullPivLU"]/results["LLT"]).format(fmt) << "\n";
|
||||
// cout << "HouseholderQR (%) " << (results["HouseholderQR"]/results["LLT"]).format(fmt) << "\n";
|
||||
// cout << "ColPivHouseholderQR (%) " << (results["ColPivHouseholderQR"]/results["LLT"]).format(fmt) << "\n";
|
||||
// cout << "CompleteOrthogonalDecomposition (%) " << (results["CompleteOrthogonalDecomposition"]/results["LLT"]).format(fmt) << "\n";
|
||||
// cout << "FullPivHouseholderQR (%) " << (results["FullPivHouseholderQR"]/results["LLT"]).format(fmt) << "\n";
|
||||
// cout << "JacobiSVD (%) " << (results["JacobiSVD"]/results["LLT"]).format(fmt) << "\n";
|
||||
// cout << "BDCSVD (%) " << (results["BDCSVD"]/results["LLT"]).format(fmt) << "\n";
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user