Cleaned a bit the sparse cholesky code

This commit is contained in:
Gael Guennebaud 2008-10-04 14:24:15 +00:00
parent 068ff3370d
commit 98d3c0a413

View File

@ -60,6 +60,7 @@ template<typename MatrixType> class BasicSparseCholesky
/** \returns true if the matrix is positive definite */
inline bool isPositiveDefinite(void) const { return m_isPositiveDefinite; }
// TODO impl the solver
// template<typename Derived>
// typename Derived::Eval solve(const MatrixBase<Derived> &b) const;
@ -83,7 +84,6 @@ template<typename MatrixType> class BasicSparseCholesky
/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix
*/
#ifdef IGEN_BASICSPARSECHOLESKY_H
template<typename MatrixType>
void BasicSparseCholesky<MatrixType>::compute(const MatrixType& a)
{
@ -154,287 +154,4 @@ void BasicSparseCholesky<MatrixType>::compute(const MatrixType& a)
m_matrix.endFill();
}
#else
template<typename MatrixType>
void BasicSparseCholesky<MatrixType>::compute(const MatrixType& a)
{
assert(a.rows()==a.cols());
const int size = a.rows();
m_matrix.resize(size, size);
const RealScalar eps = ei_sqrt(precision<Scalar>());
// allocate a temporary buffer
Scalar* buffer = new Scalar[size*2];
m_matrix.startFill(a.nonZeros()*2);
// RealScalar x;
// x = ei_real(a.coeff(0,0));
// m_isPositiveDefinite = x > eps && ei_isMuchSmallerThan(ei_imag(a.coeff(0,0)), RealScalar(1));
// m_matrix.fill(0,0) = ei_sqrt(x);
// m_matrix.col(0).end(size-1) = a.row(0).end(size-1).adjoint() / ei_real(m_matrix.coeff(0,0));
for (int j = 0; j < size; ++j)
{
// std::cout << j << " " << std::flush;
// Scalar tmp = ei_real(a.coeff(j,j));
// if (j>0)
// tmp -= m_matrix.row(j).start(j).norm2();
// x = ei_real(tmp);
// std::cout << "x = " << x << "\n";
// if (x < eps || (!ei_isMuchSmallerThan(ei_imag(tmp), RealScalar(1))))
// {
// m_isPositiveDefinite = false;
// return;
// }
// m_matrix.fill(j,j) = x = ei_sqrt(x);
Scalar x = ei_real(a.coeff(j,j));
// if (j>0)
// x -= m_matrix.row(j).start(j).norm2();
// RealScalar rx = ei_sqrt(ei_real(x));
// m_matrix.fill(j,j) = rx;
int endSize = size-j-1;
/*if (endSize>0)*/ {
// Note that when all matrix columns have good alignment, then the following
// product is guaranteed to be optimal with respect to alignment.
// m_matrix.col(j).end(endSize) =
// (m_matrix.block(j+1, 0, endSize, j) * m_matrix.row(j).start(j).adjoint()).lazy();
// FIXME could use a.col instead of a.row
// m_matrix.col(j).end(endSize) = (a.row(j).end(endSize).adjoint()
// - m_matrix.col(j).end(endSize) ) / x;
// make sure to call innerSize/outerSize since we fake the storage order.
// estimate the number of non zero entries
// float ratioLhs = float(lhs.nonZeros())/float(lhs.rows()*lhs.cols());
// float avgNnzPerRhsColumn = float(rhs.nonZeros())/float(cols);
// float ratioRes = std::min(ratioLhs * avgNnzPerRhsColumn, 1.f);
// for (int j1=0; j1<cols; ++j1)
{
// let's do a more accurate determination of the nnz ratio for the current column j of res
//float ratioColRes = std::min(ratioLhs * rhs.innerNonZeros(j), 1.f);
// FIXME find a nice way to get the number of nonzeros of a sub matrix (here an inner vector)
// float ratioColRes = ratioRes;
// if (ratioColRes>0.1)
if (true)
{
// dense path, the scalar * columns products are accumulated into a dense column
Scalar* __restrict__ tmp = buffer;
// set to zero
for (int k=j+1; k<size; ++k)
tmp[k] = 0;
// init with current matrix a
{
typename MatrixType::InnerIterator it(a,j);
++it;
for (; it; ++it)
tmp[it.index()] = it.value();
}
for (int k=0; k<j+1; ++k)
{
// Scalar y = m_matrix.coeff(j,k);
// if (!ei_isMuchSmallerThan(ei_abs(y),Scalar(1)))
// {
typename MatrixType::InnerIterator it(m_matrix, k);
while (it && it.index()<j)
++it;
if (it && it.index()==j)
{
Scalar y = it.value();
x -= ei_abs2(y);
// if (!ei_isMuchSmallerThan(ei_abs(y),Scalar(0.1)))
{
++it;
for (; it; ++it)
{
tmp[it.index()] -= it.value() * y;
}
}
}
}
// copy the temporary to the respective m_matrix.col()
RealScalar rx = ei_sqrt(ei_real(x));
m_matrix.fill(j,j) = rx;
Scalar y = Scalar(1)/rx;
for (int k=j+1; k<size; ++k)
//if (tmp[k]!=0)
if (!ei_isMuchSmallerThan(ei_abs(tmp[k]),Scalar(0.01)))
m_matrix.fill(k, j) = tmp[k]*y;
}
else
{
ListEl* __restrict__ tmp = reinterpret_cast<ListEl*>(buffer);
// sparse path, the scalar * columns products are accumulated into a linked list
int tmp_size = 0;
int tmp_start = -1;
{
int tmp_el = tmp_start;
typename MatrixType::InnerIterator it(a,j);
if (it)
{
++it;
for (; it; ++it)
{
Scalar v = it.value();
int id = it.index();
if (tmp_size==0)
{
tmp_start = 0;
tmp_el = 0;
tmp_size++;
tmp[0].value = v;
tmp[0].index = id;
tmp[0].next = -1;
}
else if (id<tmp[tmp_start].index)
{
tmp[tmp_size].value = v;
tmp[tmp_size].index = id;
tmp[tmp_size].next = tmp_start;
tmp_start = tmp_size;
tmp_el = tmp_start;
tmp_size++;
}
else
{
int nextel = tmp[tmp_el].next;
while (nextel >= 0 && tmp[nextel].index<=id)
{
tmp_el = nextel;
nextel = tmp[nextel].next;
}
if (tmp[tmp_el].index==id)
{
tmp[tmp_el].value = v;
}
else
{
tmp[tmp_size].value = v;
tmp[tmp_size].index = id;
tmp[tmp_size].next = tmp[tmp_el].next;
tmp[tmp_el].next = tmp_size;
tmp_size++;
}
}
}
}
}
// for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
for (int k=0; k<j+1; ++k)
{
// Scalar y = m_matrix.coeff(j,k);
// if (!ei_isMuchSmallerThan(ei_abs(y),Scalar(1)))
// {
int tmp_el = tmp_start;
typename MatrixType::InnerIterator it(m_matrix, k);
while (it && it.index()<j)
++it;
if (it && it.index()==j)
{
Scalar y = it.value();
x -= ei_abs2(y);
for (; it; ++it)
{
Scalar v = -it.value() * y;
int id = it.index();
if (tmp_size==0)
{
// std::cout << "insert because size==0\n";
tmp_start = 0;
tmp_el = 0;
tmp_size++;
tmp[0].value = v;
tmp[0].index = id;
tmp[0].next = -1;
}
else if (id<tmp[tmp_start].index)
{
// std::cout << "insert because not in (0) " << id << " " << tmp[tmp_start].index << " " << tmp_start << "\n";
tmp[tmp_size].value = v;
tmp[tmp_size].index = id;
tmp[tmp_size].next = tmp_start;
tmp_start = tmp_size;
tmp_el = tmp_start;
tmp_size++;
}
else
{
int nextel = tmp[tmp_el].next;
while (nextel >= 0 && tmp[nextel].index<=id)
{
tmp_el = nextel;
nextel = tmp[nextel].next;
}
if (tmp[tmp_el].index==id)
{
tmp[tmp_el].value -= v;
}
else
{
// std::cout << "insert because not in (1)\n";
tmp[tmp_size].value = v;
tmp[tmp_size].index = id;
tmp[tmp_size].next = tmp[tmp_el].next;
tmp[tmp_el].next = tmp_size;
tmp_size++;
}
}
}
}
}
RealScalar rx = ei_sqrt(ei_real(x));
m_matrix.fill(j,j) = rx;
Scalar y = Scalar(1)/rx;
int k = tmp_start;
while (k>=0)
{
if (!ei_isMuchSmallerThan(ei_abs(tmp[k].value),Scalar(0.01)))
{
// std::cout << "fill " << tmp[k].index << "," << j << "\n";
m_matrix.fill(tmp[k].index, j) = tmp[k].value * y;
}
k = tmp[k].next;
}
}
}
}
}
m_matrix.endFill();
}
#endif
/** \returns the solution of \f$ A x = b \f$ using the current decomposition of A.
* In other words, it returns \f$ A^{-1} b \f$ computing
* \f$ {L^{*}}^{-1} L^{-1} b \f$ from right to left.
* \param b the column vector \f$ b \f$, which can also be a matrix.
*
* Example: \include Cholesky_solve.cpp
* Output: \verbinclude Cholesky_solve.out
*
* \sa MatrixBase::cholesky(), CholeskyWithoutSquareRoot::solve()
*/
// template<typename MatrixType>
// template<typename Derived>
// typename Derived::Eval Cholesky<MatrixType>::solve(const MatrixBase<Derived> &b) const
// {
// const int size = m_matrix.rows();
// ei_assert(size==b.rows());
//
// return m_matrix.adjoint().template part<Upper>().solveTriangular(matrixL().solveTriangular(b));
// }
#endif // EIGEN_BASICSPARSECHOLESKY_H