mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-02-17 18:09:55 +08:00
Sparse module:
* add a MappedSparseMatrix class (like Eigen::Map but for sparse matrices) * rename SparseArray to CompressedStorage
This commit is contained in:
parent
4f33fbfc07
commit
96e1e582ff
@ -72,11 +72,12 @@ namespace Eigen {
|
||||
|
||||
#include "src/Sparse/SparseUtil.h"
|
||||
#include "src/Sparse/SparseMatrixBase.h"
|
||||
#include "src/Sparse/SparseArray.h"
|
||||
#include "src/Sparse/CompressedStorage.h"
|
||||
#include "src/Sparse/AmbiVector.h"
|
||||
#include "src/Sparse/RandomSetter.h"
|
||||
#include "src/Sparse/SparseBlock.h"
|
||||
#include "src/Sparse/SparseMatrix.h"
|
||||
#include "src/Sparse/MappedSparseMatrix.h"
|
||||
#include "src/Sparse/SparseVector.h"
|
||||
#include "src/Sparse/CoreIterators.h"
|
||||
#include "src/Sparse/SparseTranspose.h"
|
||||
|
@ -55,7 +55,7 @@ void ei_cholmod_configure_matrix(CholmodType& mat)
|
||||
}
|
||||
|
||||
template<typename Scalar, int Flags>
|
||||
cholmod_sparse SparseMatrix<Scalar,Flags>::asCholmodMatrix()
|
||||
cholmod_sparse SparseMatrixBase<Scalar,Flags>::asCholmodMatrix()
|
||||
{
|
||||
cholmod_sparse res;
|
||||
res.nzmax = nonZeros();
|
||||
@ -108,19 +108,14 @@ cholmod_dense ei_cholmod_map_eigen_to_dense(MatrixBase<Derived>& mat)
|
||||
}
|
||||
|
||||
template<typename Scalar, int Flags>
|
||||
SparseMatrix<Scalar,Flags> SparseMatrix<Scalar,Flags>::Map(cholmod_sparse& cm)
|
||||
MappedSparseMatrix<Scalar,Flags>::MappedSparseMatrix(taucs_ccs_matrix& taucsMat)
|
||||
{
|
||||
SparseMatrix res;
|
||||
res.m_innerSize = cm.nrow;
|
||||
res.m_outerSize = cm.ncol;
|
||||
res.m_outerIndex = reinterpret_cast<int*>(cm.p);
|
||||
SparseArray<Scalar> data = SparseArray<Scalar>::Map(
|
||||
reinterpret_cast<int*>(cm.i),
|
||||
reinterpret_cast<Scalar*>(cm.x),
|
||||
res.m_outerIndex[cm.ncol]);
|
||||
res.m_data.swap(data);
|
||||
res.markAsRValue();
|
||||
return res;
|
||||
m_innerSize = cm.nrow;
|
||||
m_outerSize = cm.ncol;
|
||||
m_outerIndex = reinterpret_cast<int*>(cm.p);
|
||||
m_innerIndices = reinterpret_cast<int*>(cm.i);
|
||||
m_values = reinterpret_cast<Scalar*>(cm.x);
|
||||
m_nnz = res.m_outerIndex[cm.ncol]);
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
|
@ -22,32 +22,32 @@
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_SPARSE_ARRAY_H
|
||||
#define EIGEN_SPARSE_ARRAY_H
|
||||
#ifndef EIGEN_COMPRESSED_STORAGE_H
|
||||
#define EIGEN_COMPRESSED_STORAGE_H
|
||||
|
||||
/** Stores a sparse set of values as a list of values and a list of indices.
|
||||
*
|
||||
*/
|
||||
template<typename Scalar>
|
||||
class SparseArray
|
||||
class CompressedStorage
|
||||
{
|
||||
public:
|
||||
SparseArray()
|
||||
CompressedStorage()
|
||||
: m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
|
||||
{}
|
||||
|
||||
SparseArray(int size)
|
||||
CompressedStorage(int size)
|
||||
: m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
|
||||
{
|
||||
resize(size);
|
||||
}
|
||||
|
||||
SparseArray(const SparseArray& other)
|
||||
CompressedStorage(const CompressedStorage& other)
|
||||
{
|
||||
*this = other;
|
||||
}
|
||||
|
||||
SparseArray& operator=(const SparseArray& other)
|
||||
CompressedStorage& operator=(const CompressedStorage& other)
|
||||
{
|
||||
resize(other.size());
|
||||
memcpy(m_values, other.m_values, m_size * sizeof(Scalar));
|
||||
@ -55,7 +55,7 @@ class SparseArray
|
||||
return *this;
|
||||
}
|
||||
|
||||
void swap(SparseArray& other)
|
||||
void swap(CompressedStorage& other)
|
||||
{
|
||||
std::swap(m_values, other.m_values);
|
||||
std::swap(m_indices, other.m_indices);
|
||||
@ -63,7 +63,7 @@ class SparseArray
|
||||
std::swap(m_allocatedSize, other.m_allocatedSize);
|
||||
}
|
||||
|
||||
~SparseArray()
|
||||
~CompressedStorage()
|
||||
{
|
||||
delete[] m_values;
|
||||
delete[] m_indices;
|
||||
@ -106,9 +106,9 @@ class SparseArray
|
||||
int& index(int i) { return m_indices[i]; }
|
||||
const int& index(int i) const { return m_indices[i]; }
|
||||
|
||||
static SparseArray Map(int* indices, Scalar* values, int size)
|
||||
static CompressedStorage Map(int* indices, Scalar* values, int size)
|
||||
{
|
||||
SparseArray res;
|
||||
CompressedStorage res;
|
||||
res.m_indices = indices;
|
||||
res.m_values = values;
|
||||
res.m_allocatedSize = res.m_size = size;
|
||||
@ -141,4 +141,4 @@ class SparseArray
|
||||
|
||||
};
|
||||
|
||||
#endif // EIGEN_SPARSE_ARRAY_H
|
||||
#endif // EIGEN_COMPRESSED_STORAGE_H
|
168
Eigen/src/Sparse/MappedSparseMatrix.h
Normal file
168
Eigen/src/Sparse/MappedSparseMatrix.h
Normal file
@ -0,0 +1,168 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_MAPPED_SPARSEMATRIX_H
|
||||
#define EIGEN_MAPPED_SPARSEMATRIX_H
|
||||
|
||||
/** \class MappedSparseMatrix
|
||||
*
|
||||
* \brief Sparse matrix
|
||||
*
|
||||
* \param _Scalar the scalar type, i.e. the type of the coefficients
|
||||
*
|
||||
* See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme.
|
||||
*
|
||||
*/
|
||||
template<typename _Scalar, int _Flags>
|
||||
struct ei_traits<MappedSparseMatrix<_Scalar, _Flags> > : ei_traits<SparseMatrix<_Scalar, _Flags> >
|
||||
{};
|
||||
|
||||
template<typename _Scalar, int _Flags>
|
||||
class MappedSparseMatrix
|
||||
: public SparseMatrixBase<MappedSparseMatrix<_Scalar, _Flags> >
|
||||
{
|
||||
public:
|
||||
EIGEN_SPARSE_GENERIC_PUBLIC_INTERFACE(MappedSparseMatrix)
|
||||
|
||||
protected:
|
||||
enum { IsRowMajor = Base::IsRowMajor };
|
||||
|
||||
int m_outerSize;
|
||||
int m_innerSize;
|
||||
int m_nnz;
|
||||
int* m_outerIndex;
|
||||
int* m_innerIndices;
|
||||
Scalar* m_values;
|
||||
|
||||
public:
|
||||
|
||||
inline int rows() const { return IsRowMajor ? m_outerSize : m_innerSize; }
|
||||
inline int cols() const { return IsRowMajor ? m_innerSize : m_outerSize; }
|
||||
inline int innerSize() const { return m_innerSize; }
|
||||
inline int outerSize() const { return m_outerSize; }
|
||||
inline int innerNonZeros(int j) const { return m_outerIndex[j+1]-m_outerIndex[j]; }
|
||||
|
||||
//----------------------------------------
|
||||
// direct access interface
|
||||
inline const Scalar* _valuePtr() const { return &m_values; }
|
||||
inline Scalar* _valuePtr() { return &m_values; }
|
||||
|
||||
inline const int* _innerIndexPtr() const { return &m_innerIndices; }
|
||||
inline int* _innerIndexPtr() { return m_innerIndices; }
|
||||
|
||||
inline const int* _outerIndexPtr() const { return m_outerIndex; }
|
||||
inline int* _outerIndexPtr() { return m_outerIndex; }
|
||||
//----------------------------------------
|
||||
|
||||
inline Scalar coeff(int row, int col) const
|
||||
{
|
||||
const int outer = RowMajor ? row : col;
|
||||
const int inner = RowMajor ? col : row;
|
||||
|
||||
int start = m_outerIndex[outer];
|
||||
int end = m_outerIndex[outer+1];
|
||||
if (start==end)
|
||||
return Scalar(0);
|
||||
else if (end>0 && inner==m_innerIndices[end-1])
|
||||
return m_values[end-1];
|
||||
// ^^ optimization: let's first check if it is the last coefficient
|
||||
// (very common in high level algorithms)
|
||||
|
||||
const int* r = std::lower_bound(&m_innerIndices[start],&m_innerIndices[end-1],inner);
|
||||
const int id = r-&m_innerIndices[0];
|
||||
return ((*r==inner) && (id<end)) ? m_values[id] : Scalar(0);
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(int row, int col)
|
||||
{
|
||||
const int outer = RowMajor ? row : col;
|
||||
const int inner = RowMajor ? col : row;
|
||||
|
||||
int start = m_outerIndex[outer];
|
||||
int end = m_outerIndex[outer+1];
|
||||
ei_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
|
||||
ei_assert(end>start && "coeffRef cannot be called on a zero coefficient");
|
||||
int* r = std::lower_bound(&m_innerIndices[start],&m_innerIndices[end],inner);
|
||||
const int id = r-&m_innerIndices[0];
|
||||
ei_assert((*r==inner) && (id<end) && "coeffRef cannot be called on a zero coefficient");
|
||||
return m_values[id];
|
||||
}
|
||||
|
||||
class InnerIterator;
|
||||
|
||||
/** \returns the number of non zero coefficients */
|
||||
inline int nonZeros() const { return m_nnz; }
|
||||
|
||||
inline MappedSparseMatrix(int rows, int cols, int nnz, int* outerIndexPtr, int* innerIndexPtr, Scalar* valuePtr)
|
||||
: m_outerSize(IsRowMajor?rows:cols), m_innerSize(IsRowMajor?cols:rows), m_nnz(nnz), m_outerIndex(outerIndexPtr),
|
||||
m_innerIndices(innerIndexPtr), m_values(valuePtr)
|
||||
{}
|
||||
|
||||
#ifdef EIGEN_TAUCS_SUPPORT
|
||||
explicit MappedSparseMatrix(taucs_ccs_matrix& taucsMatrix);
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_CHOLMOD_SUPPORT
|
||||
explicit MappedSparseMatrix(cholmod_sparse& cholmodMatrix);
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_SUPERLU_SUPPORT
|
||||
explicit MappedSparseMatrix(SluMatrix& sluMatrix);
|
||||
#endif
|
||||
|
||||
/** Empty destructor */
|
||||
inline ~MappedSparseMatrix() {}
|
||||
};
|
||||
|
||||
template<typename Scalar, int _Flags>
|
||||
class MappedSparseMatrix<Scalar,_Flags>::InnerIterator
|
||||
{
|
||||
public:
|
||||
InnerIterator(const MappedSparseMatrix& mat, int outer)
|
||||
: m_matrix(mat), m_id(mat._outerIndexPtr[outer]), m_start(m_id), m_end(mat._outerIndexPtr[outer+1])
|
||||
{}
|
||||
|
||||
template<unsigned int Added, unsigned int Removed>
|
||||
InnerIterator(const Flagged<MappedSparseMatrix,Added,Removed>& mat, int outer)
|
||||
: m_matrix(mat._expression()), m_id(m_matrix._outerIndexPtr[outer]),
|
||||
m_start(m_id), m_end(m_matrix._outerIndexPtr[outer+1])
|
||||
{}
|
||||
|
||||
inline InnerIterator& operator++() { m_id++; return *this; }
|
||||
|
||||
inline Scalar value() const { return m_matrix.m_valuePtr[m_id]; }
|
||||
inline Scalar& valueRef() { return const_cast<Scalar&>(m_matrix._valuePtr[m_id]); }
|
||||
|
||||
inline int index() const { return m_matrix._innerIndexPtr(m_id); }
|
||||
|
||||
inline operator bool() const { return (m_id < m_end) && (m_id>=m_start); }
|
||||
|
||||
protected:
|
||||
const MappedSparseMatrix& m_matrix;
|
||||
int m_id;
|
||||
const int m_start;
|
||||
const int m_end;
|
||||
};
|
||||
|
||||
#endif // EIGEN_MAPPED_SPARSEMATRIX_H
|
@ -57,20 +57,17 @@ class SparseMatrix
|
||||
{
|
||||
public:
|
||||
EIGEN_SPARSE_GENERIC_PUBLIC_INTERFACE(SparseMatrix)
|
||||
typedef MappedSparseMatrix<Scalar,Flags> Map;
|
||||
|
||||
protected:
|
||||
public:
|
||||
|
||||
typedef SparseMatrixBase<SparseMatrix> SparseBase;
|
||||
enum {
|
||||
RowMajor = SparseBase::IsRowMajor
|
||||
};
|
||||
enum { RowMajor = Base::IsRowMajor };
|
||||
typedef SparseMatrix<Scalar,(Flags&~RowMajorBit)|(RowMajor?RowMajorBit:0)> TransposedSparseMatrix;
|
||||
|
||||
int m_outerSize;
|
||||
int m_innerSize;
|
||||
int* m_outerIndex;
|
||||
SparseArray<Scalar> m_data;
|
||||
CompressedStorage<Scalar> m_data;
|
||||
|
||||
|
||||
public:
|
||||
@ -380,21 +377,6 @@ class SparseMatrix
|
||||
return s;
|
||||
}
|
||||
|
||||
#ifdef EIGEN_TAUCS_SUPPORT
|
||||
static SparseMatrix Map(taucs_ccs_matrix& taucsMatrix);
|
||||
taucs_ccs_matrix asTaucsMatrix();
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_CHOLMOD_SUPPORT
|
||||
static SparseMatrix Map(cholmod_sparse& cholmodMatrix);
|
||||
cholmod_sparse asCholmodMatrix();
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_SUPERLU_SUPPORT
|
||||
static SparseMatrix Map(SluMatrix& sluMatrix);
|
||||
SluMatrix asSluMatrix();
|
||||
#endif
|
||||
|
||||
/** Destructor */
|
||||
inline ~SparseMatrix()
|
||||
{
|
||||
|
@ -119,7 +119,7 @@ template<typename Derived> class SparseMatrixBase
|
||||
inline int size() const { return rows() * cols(); }
|
||||
/** \returns the number of nonzero coefficients which is in practice the number
|
||||
* of stored coefficients. */
|
||||
inline int nonZeros() const { return derived.nonZeros(); }
|
||||
inline int nonZeros() const { return derived().nonZeros(); }
|
||||
/** \returns true if either the number of rows or the number of columns is equal to 1.
|
||||
* In other words, this function returns
|
||||
* \code rows()==1 || cols()==1 \endcode
|
||||
@ -596,6 +596,18 @@ template<typename Derived> class SparseMatrixBase
|
||||
// return res;
|
||||
// }
|
||||
|
||||
#ifdef EIGEN_TAUCS_SUPPORT
|
||||
taucs_ccs_matrix asTaucsMatrix();
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_CHOLMOD_SUPPORT
|
||||
cholmod_sparse asCholmodMatrix();
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_SUPERLU_SUPPORT
|
||||
SluMatrix asSluMatrix();
|
||||
#endif
|
||||
|
||||
protected:
|
||||
|
||||
bool m_isRValue;
|
||||
|
@ -103,6 +103,7 @@ enum {
|
||||
template<typename Derived> class SparseMatrixBase;
|
||||
template<typename _Scalar, int _Flags = 0> class SparseMatrix;
|
||||
template<typename _Scalar, int _Flags = 0> class SparseVector;
|
||||
template<typename _Scalar, int _Flags = 0> class MappedSparseMatrix;
|
||||
|
||||
template<typename MatrixType> class SparseTranspose;
|
||||
template<typename MatrixType> class SparseInnerVector;
|
||||
|
@ -68,7 +68,7 @@ class SparseVector
|
||||
IsColVector = ei_traits<SparseVector>::IsColVector
|
||||
};
|
||||
|
||||
SparseArray<Scalar> m_data;
|
||||
CompressedStorage<Scalar> m_data;
|
||||
int m_size;
|
||||
|
||||
|
||||
|
@ -104,12 +104,58 @@ struct SluMatrix : SuperMatrix
|
||||
ei_assert(false && "Scalar type not supported by SuperLU");
|
||||
}
|
||||
}
|
||||
|
||||
template<typename Scalar, int Rows, int Cols, int Options, int MRows, int MCols>
|
||||
static SluMatrix Map(Matrix<Scalar,Rows,Cols,Options,MRows,MCols>& mat)
|
||||
{
|
||||
typedef Matrix<Scalar,Rows,Cols,Options,MRows,MCols> MatrixType;
|
||||
ei_assert( ((Options&RowMajor)!=RowMajor) && "row-major dense matrices is not supported by SuperLU");
|
||||
SluMatrix res;
|
||||
res.setStorageType(SLU_DN);
|
||||
res.setScalarType<Scalar>();
|
||||
res.Mtype = SLU_GE;
|
||||
|
||||
res.nrow = mat.rows();
|
||||
res.ncol = mat.cols();
|
||||
|
||||
res.storage.lda = mat.stride();
|
||||
res.storage.values = mat.data();
|
||||
return res;
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
static SluMatrix Map(MatrixType& mat)
|
||||
static SluMatrix Map(SparseMatrixBase<MatrixType>& mat)
|
||||
{
|
||||
SluMatrix res;
|
||||
SluMatrixMapHelper<MatrixType>::run(mat, res);
|
||||
if ((MatrixType::Flags&RowMajorBit)==RowMajorBit)
|
||||
{
|
||||
res.setStorageType(SLU_NR);
|
||||
res.nrow = mat.cols();
|
||||
res.ncol = mat.rows();
|
||||
}
|
||||
else
|
||||
{
|
||||
res.setStorageType(SLU_NC);
|
||||
res.nrow = mat.rows();
|
||||
res.ncol = mat.cols();
|
||||
}
|
||||
|
||||
res.Mtype = SLU_GE;
|
||||
|
||||
res.storage.nnz = mat.nonZeros();
|
||||
res.storage.values = mat.derived()._valuePtr();
|
||||
res.storage.innerInd = mat.derived()._innerIndexPtr();
|
||||
res.storage.outerInd = mat.derived()._outerIndexPtr();
|
||||
|
||||
res.setScalarType<typename MatrixType::Scalar>();
|
||||
|
||||
// FIXME the following is not very accurate
|
||||
if (MatrixType::Flags & UpperTriangular)
|
||||
res.Mtype = SLU_TRU;
|
||||
if (MatrixType::Flags & LowerTriangular)
|
||||
res.Mtype = SLU_TRL;
|
||||
if (MatrixType::Flags & SelfAdjoint)
|
||||
ei_assert(false && "SelfAdjoint matrix shape not supported by SuperLU");
|
||||
return res;
|
||||
}
|
||||
};
|
||||
@ -133,13 +179,13 @@ struct SluMatrixMapHelper<Matrix<Scalar,Rows,Cols,Options,MRows,MCols> >
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar, int Flags>
|
||||
struct SluMatrixMapHelper<SparseMatrix<Scalar,Flags> >
|
||||
template<typename Derived>
|
||||
struct SluMatrixMapHelper<SparseMatrixBase<Derived> >
|
||||
{
|
||||
typedef SparseMatrix<Scalar,Flags> MatrixType;
|
||||
typedef Derived MatrixType;
|
||||
static void run(MatrixType& mat, SluMatrix& res)
|
||||
{
|
||||
if ((Flags&RowMajorBit)==RowMajorBit)
|
||||
if ((MatrixType::Flags&RowMajorBit)==RowMajorBit)
|
||||
{
|
||||
res.setStorageType(SLU_NR);
|
||||
res.nrow = mat.cols();
|
||||
@ -159,48 +205,43 @@ struct SluMatrixMapHelper<SparseMatrix<Scalar,Flags> >
|
||||
res.storage.innerInd = mat._innerIndexPtr();
|
||||
res.storage.outerInd = mat._outerIndexPtr();
|
||||
|
||||
res.setScalarType<Scalar>();
|
||||
res.setScalarType<typename MatrixType::Scalar>();
|
||||
|
||||
// FIXME the following is not very accurate
|
||||
if (Flags & UpperTriangular)
|
||||
if (MatrixType::Flags & UpperTriangular)
|
||||
res.Mtype = SLU_TRU;
|
||||
if (Flags & LowerTriangular)
|
||||
if (MatrixType::Flags & LowerTriangular)
|
||||
res.Mtype = SLU_TRL;
|
||||
if (Flags & SelfAdjoint)
|
||||
if (MatrixType::Flags & SelfAdjoint)
|
||||
ei_assert(false && "SelfAdjoint matrix shape not supported by SuperLU");
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar, int Flags>
|
||||
SluMatrix SparseMatrix<Scalar,Flags>::asSluMatrix()
|
||||
template<typename Derived>
|
||||
SluMatrix SparseMatrixBase<Derived>::asSluMatrix()
|
||||
{
|
||||
return SluMatrix::Map(*this);
|
||||
return SluMatrix::Map(derived());
|
||||
}
|
||||
|
||||
template<typename Scalar, int Flags>
|
||||
SparseMatrix<Scalar,Flags> SparseMatrix<Scalar,Flags>::Map(SluMatrix& sluMat)
|
||||
MappedSparseMatrix<Scalar,Flags>::MappedSparseMatrix(SluMatrix& sluMat)
|
||||
{
|
||||
SparseMatrix res;
|
||||
if ((Flags&RowMajorBit)==RowMajorBit)
|
||||
{
|
||||
assert(sluMat.Stype == SLU_NR);
|
||||
res.m_innerSize = sluMat.ncol;
|
||||
res.m_outerSize = sluMat.nrow;
|
||||
m_innerSize = sluMat.ncol;
|
||||
m_outerSize = sluMat.nrow;
|
||||
}
|
||||
else
|
||||
{
|
||||
assert(sluMat.Stype == SLU_NC);
|
||||
res.m_innerSize = sluMat.nrow;
|
||||
res.m_outerSize = sluMat.ncol;
|
||||
m_innerSize = sluMat.nrow;
|
||||
m_outerSize = sluMat.ncol;
|
||||
}
|
||||
res.m_outerIndex = sluMat.storage.outerInd;
|
||||
SparseArray<Scalar> data = SparseArray<Scalar>::Map(
|
||||
sluMat.storage.innerInd,
|
||||
reinterpret_cast<Scalar*>(sluMat.storage.values),
|
||||
sluMat.storage.outerInd[res.m_outerSize]);
|
||||
res.m_data.swap(data);
|
||||
res.markAsRValue();
|
||||
return res;
|
||||
m_outerIndex = sluMat.storage.outerInd;
|
||||
m_innerIndices = sluMat.storage.innerInd;
|
||||
m_values = reinterpret_cast<Scalar*>(sluMat.storage.values);
|
||||
m_nnz = sluMat.storage.outerInd[m_outerSize];
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
|
@ -25,8 +25,8 @@
|
||||
#ifndef EIGEN_TAUCSSUPPORT_H
|
||||
#define EIGEN_TAUCSSUPPORT_H
|
||||
|
||||
template<typename Scalar, int Flags>
|
||||
taucs_ccs_matrix SparseMatrix<Scalar,Flags>::asTaucsMatrix()
|
||||
template<typename Derived>
|
||||
taucs_ccs_matrix SparseMatrixBase<Derived>::asTaucsMatrix()
|
||||
{
|
||||
taucs_ccs_matrix res;
|
||||
res.n = cols();
|
||||
@ -63,19 +63,14 @@ taucs_ccs_matrix SparseMatrix<Scalar,Flags>::asTaucsMatrix()
|
||||
}
|
||||
|
||||
template<typename Scalar, int Flags>
|
||||
SparseMatrix<Scalar,Flags> SparseMatrix<Scalar,Flags>::Map(taucs_ccs_matrix& taucsMat)
|
||||
MappedSparseMatrix<Scalar,Flags>::MappedSparseMatrix(taucs_ccs_matrix& taucsMat)
|
||||
{
|
||||
SparseMatrix res;
|
||||
res.m_innerSize = taucsMat.m;
|
||||
res.m_outerSize = taucsMat.n;
|
||||
res.m_outerIndex = taucsMat.colptr;
|
||||
SparseArray<Scalar> data = SparseArray<Scalar>::Map(
|
||||
taucsMat.rowind,
|
||||
reinterpret_cast<Scalar*>(taucsMat.values.v),
|
||||
taucsMat.colptr[taucsMat.n]);
|
||||
res.m_data.swap(data);
|
||||
res.markAsRValue();
|
||||
return res;
|
||||
m_innerSize = taucsMat.m;
|
||||
m_outerSize = taucsMat.n;
|
||||
m_outerIndex = taucsMat.colptr;
|
||||
m_innerIndices = taucsMat.rowind;
|
||||
m_values = reinterpret_cast<Scalar*>(taucsMat.values.v);
|
||||
m_nnz = taucsMat.colptr[taucsMat.n];
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
|
Loading…
Reference in New Issue
Block a user