mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
Fix bug #827: improve accuracy of quaternion to angle-axis conversion
This commit is contained in:
parent
98ef44fe55
commit
963d338922
@ -77,7 +77,9 @@ public:
|
||||
* represents an invalid rotation. */
|
||||
template<typename Derived>
|
||||
inline AngleAxis(const Scalar& angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
|
||||
/** Constructs and initialize the angle-axis rotation from a quaternion \a q. */
|
||||
/** Constructs and initialize the angle-axis rotation from a quaternion \a q.
|
||||
* This function implicitly normalizes the quaternion \a q.
|
||||
*/
|
||||
template<typename QuatDerived> inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; }
|
||||
/** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
|
||||
template<typename Derived>
|
||||
@ -149,29 +151,27 @@ typedef AngleAxis<float> AngleAxisf;
|
||||
typedef AngleAxis<double> AngleAxisd;
|
||||
|
||||
/** Set \c *this from a \b unit quaternion.
|
||||
* The axis is normalized.
|
||||
* The resulting axis is normalized.
|
||||
*
|
||||
* \warning As any other method dealing with quaternion, if the input quaternion
|
||||
* is not normalized then the result is undefined.
|
||||
* This function implicitly normalizes the quaternion \a q.
|
||||
*/
|
||||
template<typename Scalar>
|
||||
template<typename QuatDerived>
|
||||
AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q)
|
||||
{
|
||||
using std::acos;
|
||||
EIGEN_USING_STD_MATH(min);
|
||||
EIGEN_USING_STD_MATH(max);
|
||||
using std::sqrt;
|
||||
Scalar n2 = q.vec().squaredNorm();
|
||||
if (n2 < NumTraits<Scalar>::dummy_precision()*NumTraits<Scalar>::dummy_precision())
|
||||
using std::atan2;
|
||||
Scalar n = q.vec().norm();
|
||||
if(n<NumTraits<Scalar>::epsilon())
|
||||
n = q.vec().stableNorm();
|
||||
if (n > Scalar(0))
|
||||
{
|
||||
m_angle = Scalar(0);
|
||||
m_axis << Scalar(1), Scalar(0), Scalar(0);
|
||||
m_angle = Scalar(2)*atan2(n, q.w());
|
||||
m_axis = q.vec() / n;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_angle = Scalar(2)*acos((min)((max)(Scalar(-1),q.w()),Scalar(1)));
|
||||
m_axis = q.vec() / sqrt(n2);
|
||||
m_angle = 0;
|
||||
m_axis << 1, 0, 0;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user