From 956251b738a4d955fb4322c2bc5dc5170d9b8367 Mon Sep 17 00:00:00 2001
From: Gael Guennebaud <g.gael@free.fr>
Date: Mon, 12 Aug 2013 13:37:47 +0200
Subject: [PATCH] bug #638: fix typos in sparse tutorial

---
 doc/TutorialSparse.dox                                   | 2 +-
 doc/special_examples/CMakeLists.txt                      | 6 +++---
 doc/special_examples/Tutorial_sparse_example_details.cpp | 4 ++--
 3 files changed, 6 insertions(+), 6 deletions(-)

diff --git a/doc/TutorialSparse.dox b/doc/TutorialSparse.dox
index dbfb4a9eb..835c59354 100644
--- a/doc/TutorialSparse.dox
+++ b/doc/TutorialSparse.dox
@@ -83,7 +83,7 @@ There is no notion of compressed/uncompressed mode for a SparseVector.
 
 \section TutorialSparseExample First example
 
-Before describing each individual class, let's start with the following typical example: solving the Lapace equation \f$ \nabla u = 0 \f$ on a regular 2D grid using a finite difference scheme and Dirichlet boundary conditions.
+Before describing each individual class, let's start with the following typical example: solving the Laplace equation \f$ \nabla u = 0 \f$ on a regular 2D grid using a finite difference scheme and Dirichlet boundary conditions.
 Such problem can be mathematically expressed as a linear problem of the form \f$ Ax=b \f$ where \f$ x \f$ is the vector of \c m unknowns (in our case, the values of the pixels), \f$ b \f$ is the right hand side vector resulting from the boundary conditions, and \f$ A \f$ is an \f$ m \times m \f$ matrix containing only a few non-zero elements resulting from the discretization of the Laplacian operator.
 
 <table class="manual">
diff --git a/doc/special_examples/CMakeLists.txt b/doc/special_examples/CMakeLists.txt
index 138a2f6ef..0c9b3c3ba 100644
--- a/doc/special_examples/CMakeLists.txt
+++ b/doc/special_examples/CMakeLists.txt
@@ -10,12 +10,12 @@ endif(NOT EIGEN_TEST_NOQT)
 if(QT4_FOUND)
   add_executable(Tutorial_sparse_example Tutorial_sparse_example.cpp Tutorial_sparse_example_details.cpp)
   target_link_libraries(Tutorial_sparse_example ${EIGEN_STANDARD_LIBRARIES_TO_LINK_TO} ${QT_QTCORE_LIBRARY} ${QT_QTGUI_LIBRARY})
-
+  
   add_custom_command(
       TARGET Tutorial_sparse_example
       POST_BUILD
-      COMMAND Tutorial_sparse_example
-      ARGS ${CMAKE_CURRENT_BINARY_DIR}/../html/Tutorial_sparse_example.jpeg
+      COMMAND Tutorial_sparse_example ARGS ${CMAKE_CURRENT_BINARY_DIR}/../html/Tutorial_sparse_example.jpeg
   )
+                     
   add_dependencies(all_examples Tutorial_sparse_example)
 endif(QT4_FOUND)
diff --git a/doc/special_examples/Tutorial_sparse_example_details.cpp b/doc/special_examples/Tutorial_sparse_example_details.cpp
index 8c3020b63..7d820b44a 100644
--- a/doc/special_examples/Tutorial_sparse_example_details.cpp
+++ b/doc/special_examples/Tutorial_sparse_example_details.cpp
@@ -11,8 +11,8 @@ void insertCoefficient(int id, int i, int j, double w, std::vector<T>& coeffs,
   int n = boundary.size();
   int id1 = i+j*n;
 
-        if(i==-1 || i==n) b(id) -= w * boundary(j); // constrained coeffcieint
-  else  if(j==-1 || j==n) b(id) -= w * boundary(i); // constrained coeffcieint
+        if(i==-1 || i==n) b(id) -= w * boundary(j); // constrained coefficient
+  else  if(j==-1 || j==n) b(id) -= w * boundary(i); // constrained coefficient
   else  coeffs.push_back(T(id,id1,w));              // unknown coefficient
 }