Add an axis aligned box in the geometry module.

Some naming questions:
- for "extend" we could also think of: "expand", "union", "add"
- same for "clamp": "crop", "intersect"
- same for "contains": "isInside", "intersect"
=> ah "intersect" is conflicting, so that eliminates this one !
This commit is contained in:
Gael Guennebaud 2008-10-26 15:04:31 +00:00
parent ec0a423862
commit 94f6f2a7de
7 changed files with 260 additions and 4 deletions

View File

@ -33,6 +33,7 @@ namespace Eigen {
#include "src/Geometry/Scaling.h"
#include "src/Geometry/Hyperplane.h"
#include "src/Geometry/ParametrizedLine.h"
#include "src/Geometry/AlignedBox.h"
} // namespace Eigen

View File

@ -0,0 +1,179 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_ALIGNEDBOX_H
#define EIGEN_ALIGNEDBOX_H
/** \geometry_module \ingroup GeometryModule
*
* \class AlignedBox
*
* \brief A box aligned with a axis
*
* \param _Scalar the type of the scalar coefficients
* \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
*
* This class represents an axis aligned box as the pair of the minimal and maximal corners.
*/
template <typename _Scalar, int _AmbientDim>
class AlignedBox
#ifdef EIGEN_VECTORIZE
: public ei_with_aligned_operator_new<_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1>
#endif
{
public:
enum { AmbientDimAtCompileTime = _AmbientDim };
typedef _Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
/** Default constructor initializing a null box. */
inline explicit AlignedBox()
{ if (AmbientDimAtCompileTime!=Dynamic) setNull(); }
/** Constructs a null box with \a _dim the dimension of the ambient space. */
inline explicit AlignedBox(int _dim) : m_min(_dim), m_max(_dim)
{ setNull(); }
/** Constructs a box with extremities \a _min and \a _max. */
inline AlignedBox(const VectorType& _min, const VectorType _max) : m_min(_min), m_max(_max) {}
/** Constructs a box containing a single point \a p. */
inline explicit AlignedBox(const VectorType& p) : m_min(p), m_max(p) {}
~AlignedBox() {}
/** \returns the dimension in which the box holds */
inline int dim() const { return AmbientDimAtCompileTime==Dynamic ? m_min.size()-1 : AmbientDimAtCompileTime; }
/** \returns true if the box is null, i.e, empty. */
inline bool isNull() const { return (m_min.cwise() > m_max).any(); }
/** Makes \c *this a null/empty box. */
inline void setNull()
{
m_min.setConstant( std::numeric_limits<Scalar>::max());
m_max.setConstant(-std::numeric_limits<Scalar>::max());
}
/** \returns the minimal corner */
inline const VectorType& min() const { return m_min; }
/** \returns a non const reference to the minimal corner */
inline VectorType& min() { return m_min; }
/** \returns the maximal corner */
inline const VectorType& max() const { return m_max; }
/** \returns a non const reference to the maximal corner */
inline VectorType& max() { return m_max; }
/** \returns true if the point \a p is inside the box \c *this. */
inline bool contains(const VectorType& p) const
{ return (m_min.cwise()<=p).all() && (p.cwise()<=m_max).all(); }
/** \returns true if the box \a b is entirely inside the box \c *this. */
inline bool contains(const AlignedBox& b) const
{ return (m_min.cwise()<=b.min()).all() && (b.max().cwise()<=m_max).all(); }
/** Extends \c *this such that it contains the point \a p and returns a reference to \c *this. */
inline AlignedBox& extend(const VectorType& p)
{ m_min = m_min.cwise().min(p); m_max = m_max.cwise().max(p); return *this; }
/** Extends \c *this such that it contains the box \a b and returns a reference to \c *this. */
inline AlignedBox& extend(const AlignedBox& b)
{ m_min = m_min.cwise().min(b.m_min); m_max = m_max.cwise().max(b.m_max); return *this; }
/** Clamps \c *this by the box \a b and returns a reference to \c *this. */
inline AlignedBox& clamp(const AlignedBox& b)
{ m_min = m_min.cwise().max(b.m_min); m_max = m_max.cwise().min(b.m_max); return *this; }
/** \returns the squared distance between the point \a p and the box \c *this,
* and zero if \a p is inside the box.
* \sa exteriorDistance()
*/
inline Scalar squaredExteriorDistance(const VectorType& p) const;
/** \returns the distance between the point \a p and the box \c *this,
* and zero if \a p is inside the box.
* \sa squaredExteriorDistance()
*/
inline Scalar exteriorDistance(const VectorType& p) const
{ return ei_sqrt(squaredExteriorDistance(p)); }
/** Translate \c *this by the vector \a t and returns a reference to \c *this. */
inline AlignedBox& translate(const VectorType& t)
{
m_min += t;
m_max += t;
return *this;
}
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
inline typename ei_cast_return_type<AlignedBox,
AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
{
return typename ei_cast_return_type<AlignedBox,
AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
}
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType>
inline explicit AlignedBox(const AlignedBox<OtherScalarType,AmbientDimAtCompileTime>& other)
{
m_min = other.min().template cast<OtherScalarType>();
m_max = other.max().template cast<OtherScalarType>();
}
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const AlignedBox& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
{ return m_min.isApprox(other.m_min, prec) && m_max.isApprox(other.m_max, prec); }
protected:
VectorType m_min, m_max;
};
template<typename Scalar,int AmbiantDim>
inline Scalar AlignedBox<Scalar,AmbiantDim>::squaredExteriorDistance(const VectorType& p) const
{
Scalar dist2 = 0.;
Scalar aux;
for (int k=0; k<dim(); ++k)
{
if ((aux = (p[k]-m_min[k]))<0.)
dist2 += aux*aux;
else if ( (aux = (m_max[k]-p[k]))<0. )
dist2 += aux*aux;
}
return dist2;
}
#endif // EIGEN_ALIGNEDBOX_H

View File

@ -203,7 +203,7 @@ public:
}
}
/** \returns the transformation of \c *this by the transformation matrix \a mat.
/** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this.
*
* \param mat the Dim x Dim transformation matrix
* \param traits specifies whether the matrix \a mat represents an Isometry
@ -223,7 +223,7 @@ public:
return *this;
}
/** \returns the transformation of \c *this by the transformation \a t
/** Applies the transformation \a t to \c *this and returns a reference to \c *this.
*
* \param t the transformation of dimension Dim
* \param traits specifies whether the transformation \a t represents an Isometry

View File

@ -35,7 +35,7 @@
* \param _Dim the dimension of the space, can be a compile time value or Dynamic
*
* \note This class is not aimed to be used to store a scaling transformation,
* but rather to make easier the constructions and updates of Transformation object.
* but rather to make easier the constructions and updates of Transform objects.
*
* \sa class Translation, class Transform
*/

View File

@ -35,7 +35,7 @@
* \param _Dim the dimension of the space, can be a compile time value or Dynamic
*
* \note This class is not aimed to be used to store a translation transformation,
* but rather to make easier the constructions and updates of Transformation object.
* but rather to make easier the constructions and updates of Transform objects.
*
* \sa class Scaling, class Transform
*/

View File

@ -166,6 +166,7 @@ ei_add_test(svd)
ei_add_test(geometry)
ei_add_test(hyperplane)
ei_add_test(parametrizedline)
ei_add_test(alignedbox)
ei_add_test(regression)
ei_add_test(sparse )

75
test/alignedbox.cpp Normal file
View File

@ -0,0 +1,75 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
#include <Eigen/Geometry>
#include <Eigen/LU>
#include <Eigen/QR>
template<typename BoxType> void alignedbox(const BoxType& _box)
{
/* this test covers the following files:
AlignedBox.h
*/
const int dim = _box.dim();
typedef typename BoxType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;
VectorType p0 = VectorType::Random(dim);
VectorType p1 = VectorType::Random(dim);
RealScalar s1 = ei_random<RealScalar>(0,1);
BoxType b0(dim);
BoxType b1(VectorType::Random(dim),VectorType::Random(dim));
BoxType b2;
b0.extend(p0);
b0.extend(p1);
VERIFY(b0.contains(p0*s1+(1.-s1)*p1));
VERIFY(!b0.contains(p0 + (1+s1)*(p1-p0)));
(b2 = b0).extend(b1);
VERIFY(b2.contains(b0));
VERIFY(b2.contains(b1));
VERIFY_IS_APPROX(b2.clamp(b0), b0);
// casting
const int Dim = BoxType::AmbientDimAtCompileTime;
typedef typename GetDifferentType<Scalar>::type OtherScalar;
AlignedBox<OtherScalar,Dim> hp1f = b0.template cast<OtherScalar>();
VERIFY_IS_APPROX(hp1f.template cast<Scalar>(),b0);
AlignedBox<Scalar,Dim> hp1d = b0.template cast<Scalar>();
VERIFY_IS_APPROX(hp1d.template cast<Scalar>(),b0);
}
void test_alignedbox()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST( alignedbox(AlignedBox<float,2>()) );
CALL_SUBTEST( alignedbox(AlignedBox<float,3>()) );
CALL_SUBTEST( alignedbox(AlignedBox<double,4>()) );
}
}