Fixed the return types of unary and binary expressions to properly handle the case where it is different from the input type (e.g. abs(complex<float>))

This commit is contained in:
Benoit Steiner 2014-10-16 10:41:07 -07:00
parent d853adffdb
commit 94e47798f4
3 changed files with 27 additions and 13 deletions

View File

@ -155,8 +155,8 @@ struct TensorEvaluator<const TensorCwiseNullaryOp<NullaryOp, ArgType>, Device>
typedef typename XprType::Index Index;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketReturnType PacketReturnType;
typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
typedef typename internal::traits<XprType>::Packet PacketReturnType;
typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_argImpl.dimensions(); }
@ -203,8 +203,8 @@ struct TensorEvaluator<const TensorCwiseUnaryOp<UnaryOp, ArgType>, Device>
typedef typename XprType::Index Index;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketReturnType PacketReturnType;
typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
typedef typename internal::traits<XprType>::Packet PacketReturnType;
typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_argImpl.dimensions(); }
@ -257,8 +257,8 @@ struct TensorEvaluator<const TensorCwiseBinaryOp<BinaryOp, LeftArgType, RightArg
typedef typename XprType::Index Index;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketReturnType PacketReturnType;
typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
typedef typename internal::traits<XprType>::Packet PacketReturnType;
typedef typename TensorEvaluator<LeftArgType, Device>::Dimensions Dimensions;
EIGEN_DEVICE_FUNC const Dimensions& dimensions() const
@ -317,8 +317,8 @@ struct TensorEvaluator<const TensorSelectOp<IfArgType, ThenArgType, ElseArgType>
typedef typename XprType::Index Index;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketReturnType PacketReturnType;
typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
typedef typename internal::traits<XprType>::Packet PacketReturnType;
typedef typename TensorEvaluator<IfArgType, Device>::Dimensions Dimensions;
EIGEN_DEVICE_FUNC const Dimensions& dimensions() const

View File

@ -84,9 +84,7 @@ struct traits<TensorCwiseUnaryOp<UnaryOp, XprType> >
typedef typename result_of<
UnaryOp(typename XprType::Scalar)
>::type Scalar;
typedef typename result_of<
UnaryOp(typename XprType::Packet)
>::type Packet;
typedef typename internal::packet_traits<Scalar>::type Packet;
typedef typename XprType::Nested XprTypeNested;
typedef typename remove_reference<XprTypeNested>::type _XprTypeNested;
};
@ -188,8 +186,7 @@ class TensorCwiseBinaryOp : public TensorBase<TensorCwiseBinaryOp<BinaryOp, LhsX
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
typedef typename internal::promote_storage_type<typename LhsXprType::CoeffReturnType,
typename RhsXprType::CoeffReturnType>::ret CoeffReturnType;
typedef typename internal::promote_storage_type<typename LhsXprType::PacketReturnType,
typename RhsXprType::PacketReturnType>::ret PacketReturnType;
typedef typename internal::packet_traits<CoeffReturnType>::type PacketReturnType;
typedef typename Eigen::internal::nested<TensorCwiseBinaryOp>::type Nested;
typedef typename Eigen::internal::traits<TensorCwiseBinaryOp>::StorageKind StorageKind;
typedef typename Eigen::internal::traits<TensorCwiseBinaryOp>::Index Index;

View File

@ -32,6 +32,22 @@ static void test_additions()
}
static void test_abs()
{
Tensor<std::complex<float>, 1> data1(3);
Tensor<std::complex<double>, 1> data2(3);
data1.setRandom();
data2.setRandom();
Tensor<float, 1> abs1 = data1.abs();
Tensor<double, 1> abs2 = data2.abs();
for (int i = 0; i < 3; ++i) {
VERIFY_IS_APPROX(abs1(i), std::abs(data1(i)));
VERIFY_IS_APPROX(abs2(i), std::abs(data2(i)));
}
}
static void test_contractions()
{
Tensor<std::complex<float>, 4> t_left(30, 50, 8, 31);
@ -60,5 +76,6 @@ static void test_contractions()
void test_cxx11_tensor_of_complex()
{
CALL_SUBTEST(test_additions());
CALL_SUBTEST(test_abs());
CALL_SUBTEST(test_contractions());
}