mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
Use scalar_sum_op and scalar_quotient_op instead of operator+ and operator/ in MeanReducer.
Improves support for std::complex types when compiling for CUDA. Expands one2e9cdd169
and2bda1b0d93
.
This commit is contained in:
parent
d9084ac8e1
commit
949a2da38c
@ -166,7 +166,8 @@ template <typename T> struct MeanReducer
|
||||
return pset1<Packet>(initialize());
|
||||
}
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T accum) const {
|
||||
return accum / scalarCount_;
|
||||
internal::scalar_quotient_op<T> quotient_op;
|
||||
return quotient_op(accum, T(scalarCount_));
|
||||
}
|
||||
template <typename Packet>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet finalizePacket(const Packet& vaccum) const {
|
||||
@ -175,7 +176,10 @@ template <typename T> struct MeanReducer
|
||||
template <typename Packet>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalizeBoth(const T saccum, const Packet& vaccum) const {
|
||||
internal::scalar_sum_op<T> sum_op;
|
||||
return sum_op(saccum, predux(vaccum)) / (scalarCount_ + packetCount_ * unpacket_traits<Packet>::size);
|
||||
internal::scalar_quotient_op<T> quotient_op;
|
||||
return quotient_op(
|
||||
sum_op(saccum, predux(vaccum)),
|
||||
T(scalarCount_ + packetCount_ * unpacket_traits<Packet>::size));
|
||||
}
|
||||
|
||||
protected:
|
||||
|
@ -107,6 +107,41 @@ static void test_cuda_sum_reductions() {
|
||||
gpu_device.deallocate(gpu_out_ptr);
|
||||
}
|
||||
|
||||
static void test_cuda_mean_reductions() {
|
||||
|
||||
Eigen::CudaStreamDevice stream;
|
||||
Eigen::GpuDevice gpu_device(&stream);
|
||||
|
||||
const int num_rows = internal::random<int>(1024, 5*1024);
|
||||
const int num_cols = internal::random<int>(1024, 5*1024);
|
||||
|
||||
Tensor<std::complex<float>, 2> in(num_rows, num_cols);
|
||||
in.setRandom();
|
||||
|
||||
Tensor<std::complex<float>, 0> full_redux;
|
||||
full_redux = in.mean();
|
||||
|
||||
std::size_t in_bytes = in.size() * sizeof(std::complex<float>);
|
||||
std::size_t out_bytes = full_redux.size() * sizeof(std::complex<float>);
|
||||
std::complex<float>* gpu_in_ptr = static_cast<std::complex<float>*>(gpu_device.allocate(in_bytes));
|
||||
std::complex<float>* gpu_out_ptr = static_cast<std::complex<float>*>(gpu_device.allocate(out_bytes));
|
||||
gpu_device.memcpyHostToDevice(gpu_in_ptr, in.data(), in_bytes);
|
||||
|
||||
TensorMap<Tensor<std::complex<float>, 2> > in_gpu(gpu_in_ptr, num_rows, num_cols);
|
||||
TensorMap<Tensor<std::complex<float>, 0> > out_gpu(gpu_out_ptr);
|
||||
|
||||
out_gpu.device(gpu_device) = in_gpu.mean();
|
||||
|
||||
Tensor<std::complex<float>, 0> full_redux_gpu;
|
||||
gpu_device.memcpyDeviceToHost(full_redux_gpu.data(), gpu_out_ptr, out_bytes);
|
||||
gpu_device.synchronize();
|
||||
|
||||
// Check that the CPU and GPU reductions return the same result.
|
||||
VERIFY_IS_APPROX(full_redux(), full_redux_gpu());
|
||||
|
||||
gpu_device.deallocate(gpu_in_ptr);
|
||||
gpu_device.deallocate(gpu_out_ptr);
|
||||
}
|
||||
|
||||
static void test_cuda_product_reductions() {
|
||||
|
||||
@ -149,5 +184,6 @@ void test_cxx11_tensor_complex()
|
||||
{
|
||||
CALL_SUBTEST(test_cuda_nullary());
|
||||
CALL_SUBTEST(test_cuda_sum_reductions());
|
||||
CALL_SUBTEST(test_cuda_mean_reductions());
|
||||
CALL_SUBTEST(test_cuda_product_reductions());
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user