mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-30 17:40:05 +08:00
initial pass of FFT module -- includes complex 1-d case only
This commit is contained in:
parent
72f66d717d
commit
92ca9fc032
84
unsupported/Eigen/FFT.h
Normal file
84
unsupported/Eigen/FFT.h
Normal file
@ -0,0 +1,84 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_FFT_H
|
||||
#define EIGEN_FFT_H
|
||||
|
||||
// simple_fft_traits: small, free, reasonably efficient default, derived from kissfft
|
||||
#include "src/FFT/simple_fft_traits.h"
|
||||
#define DEFAULT_FFT_TRAITS simple_fft_traits
|
||||
|
||||
// FFTW: faster, GPL-not LGPL, bigger code size
|
||||
#ifdef FFTW_PATIENT // definition of FFTW_PATIENT indicates the caller has included fftw3.h, we can use FFTW routines
|
||||
// TODO
|
||||
// #include "src/FFT/fftw_traits.h"
|
||||
// #define DEFAULT_FFT_TRAITS fftw_traits
|
||||
#endif
|
||||
|
||||
// intel Math Kernel Library: fastest, commerical
|
||||
#ifdef _MKL_DFTI_H_ // mkl_dfti.h has been included, we can use MKL FFT routines
|
||||
// TODO
|
||||
// #include "src/FFT/imkl_traits.h"
|
||||
// #define DEFAULT_FFT_TRAITS imkl_traits
|
||||
#endif
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template <typename _Scalar,
|
||||
typename _Traits=DEFAULT_FFT_TRAITS<_Scalar>
|
||||
>
|
||||
class FFT
|
||||
{
|
||||
public:
|
||||
typedef _Traits traits_type;
|
||||
typedef typename traits_type::Scalar Scalar;
|
||||
typedef typename traits_type::Complex Complex;
|
||||
|
||||
FFT(const traits_type & traits=traits_type() ) :m_traits(traits) { }
|
||||
|
||||
void fwd( Complex * dst, const Complex * src, int nfft)
|
||||
{
|
||||
m_traits.prepare(nfft,false,dst,src);
|
||||
m_traits.exec(dst,src);
|
||||
m_traits.postprocess(dst);
|
||||
}
|
||||
|
||||
void inv( Complex * dst, const Complex * src, int nfft)
|
||||
{
|
||||
m_traits.prepare(nfft,true,dst,src);
|
||||
m_traits.exec(dst,src);
|
||||
m_traits.postprocess(dst);
|
||||
}
|
||||
|
||||
// TODO: fwd,inv for Scalar
|
||||
// TODO: multi-dimensional FFTs
|
||||
// TODO: handle Eigen MatrixBase
|
||||
|
||||
traits_type & traits() {return m_traits;}
|
||||
private:
|
||||
traits_type m_traits;
|
||||
};
|
||||
#undef DEFAULT_FFT_TRAITS
|
||||
}
|
||||
#endif
|
296
unsupported/Eigen/src/FFT/simple_fft_traits.h
Normal file
296
unsupported/Eigen/src/FFT/simple_fft_traits.h
Normal file
@ -0,0 +1,296 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include <complex>
|
||||
#include <vector>
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template <typename _Scalar>
|
||||
struct simple_fft_traits
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
typedef std::complex<Scalar> Complex;
|
||||
simple_fft_traits() : m_nfft(0) {}
|
||||
|
||||
void prepare(int nfft,bool inverse,Complex * dst,const Complex *src)
|
||||
{
|
||||
if (m_nfft == nfft) {
|
||||
// reuse the twiddles, conjugate if necessary
|
||||
if (inverse != m_inverse)
|
||||
for (int i=0;i<nfft;++i)
|
||||
m_twiddles[i] = conj( m_twiddles[i] );
|
||||
m_inverse = inverse;
|
||||
return;
|
||||
}
|
||||
m_nfft = nfft;
|
||||
m_inverse = inverse;
|
||||
m_twiddles.resize(nfft);
|
||||
Scalar phinc = (inverse?2:-2)* acos( (Scalar) -1) / nfft;
|
||||
for (int i=0;i<nfft;++i)
|
||||
m_twiddles[i] = exp( Complex(0,i*phinc) );
|
||||
|
||||
m_stageRadix.resize(0);
|
||||
m_stageRemainder.resize(0);
|
||||
//factorize
|
||||
//start factoring out 4's, then 2's, then 3,5,7,9,...
|
||||
int n= nfft;
|
||||
int p=4;
|
||||
do {
|
||||
while (n % p) {
|
||||
switch (p) {
|
||||
case 4: p = 2; break;
|
||||
case 2: p = 3; break;
|
||||
default: p += 2; break;
|
||||
}
|
||||
if (p*p>n)
|
||||
p=n;// no more factors
|
||||
}
|
||||
n /= p;
|
||||
m_stageRadix.push_back(p);
|
||||
m_stageRemainder.push_back(n);
|
||||
}while(n>1);
|
||||
}
|
||||
|
||||
void exec(Complex * dst, const Complex * src)
|
||||
{
|
||||
work(0, dst, src, 1,1);
|
||||
}
|
||||
|
||||
void postprocess(Complex *dst)
|
||||
{
|
||||
if (m_inverse) {
|
||||
Scalar scale = 1./m_nfft;
|
||||
for (int k=0;k<m_nfft;++k)
|
||||
dst[k] *= scale;
|
||||
}
|
||||
}
|
||||
private:
|
||||
void work( int stage,Complex * Fout, const Complex * f, size_t fstride,size_t in_stride)
|
||||
{
|
||||
int p = m_stageRadix[stage];
|
||||
int m = m_stageRemainder[stage];
|
||||
Complex * Fout_beg = Fout;
|
||||
Complex * Fout_end = Fout + p*m;
|
||||
|
||||
if (m==1) {
|
||||
do{
|
||||
*Fout = *f;
|
||||
f += fstride*in_stride;
|
||||
}while(++Fout != Fout_end );
|
||||
}else{
|
||||
do{
|
||||
// recursive call:
|
||||
// DFT of size m*p performed by doing
|
||||
// p instances of smaller DFTs of size m,
|
||||
// each one takes a decimated version of the input
|
||||
work(stage+1, Fout , f, fstride*p,in_stride);
|
||||
f += fstride*in_stride;
|
||||
}while( (Fout += m) != Fout_end );
|
||||
}
|
||||
|
||||
Fout=Fout_beg;
|
||||
|
||||
// recombine the p smaller DFTs
|
||||
switch (p) {
|
||||
case 2: bfly2(Fout,fstride,m); break;
|
||||
case 3: bfly3(Fout,fstride,m); break;
|
||||
case 4: bfly4(Fout,fstride,m); break;
|
||||
case 5: bfly5(Fout,fstride,m); break;
|
||||
default: bfly_generic(Fout,fstride,m,p); break;
|
||||
}
|
||||
}
|
||||
|
||||
void bfly2( Complex * Fout, const size_t fstride, int m)
|
||||
{
|
||||
for (int k=0;k<m;++k) {
|
||||
Complex t = Fout[m+k] * m_twiddles[k*fstride];
|
||||
Fout[m+k] = Fout[k] - t;
|
||||
Fout[k] += t;
|
||||
}
|
||||
}
|
||||
|
||||
void bfly4( Complex * Fout, const size_t fstride, const size_t m)
|
||||
{
|
||||
Complex scratch[7];
|
||||
int negative_if_inverse = m_inverse * -2 +1;
|
||||
for (size_t k=0;k<m;++k) {
|
||||
scratch[0] = Fout[k+m] * m_twiddles[k*fstride];
|
||||
scratch[1] = Fout[k+2*m] * m_twiddles[k*fstride*2];
|
||||
scratch[2] = Fout[k+3*m] * m_twiddles[k*fstride*3];
|
||||
scratch[5] = Fout[k] - scratch[1];
|
||||
|
||||
Fout[k] += scratch[1];
|
||||
scratch[3] = scratch[0] + scratch[2];
|
||||
scratch[4] = scratch[0] - scratch[2];
|
||||
scratch[4] = Complex( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse );
|
||||
|
||||
Fout[k+2*m] = Fout[k] - scratch[3];
|
||||
Fout[k] += scratch[3];
|
||||
Fout[k+m] = scratch[5] + scratch[4];
|
||||
Fout[k+3*m] = scratch[5] - scratch[4];
|
||||
}
|
||||
}
|
||||
|
||||
void bfly3( Complex * Fout, const size_t fstride, const size_t m)
|
||||
{
|
||||
size_t k=m;
|
||||
const size_t m2 = 2*m;
|
||||
Complex *tw1,*tw2;
|
||||
Complex scratch[5];
|
||||
Complex epi3;
|
||||
epi3 = m_twiddles[fstride*m];
|
||||
|
||||
tw1=tw2=&m_twiddles[0];
|
||||
|
||||
do{
|
||||
scratch[1]=Fout[m] * *tw1;
|
||||
scratch[2]=Fout[m2] * *tw2;
|
||||
|
||||
scratch[3]=scratch[1]+scratch[2];
|
||||
scratch[0]=scratch[1]-scratch[2];
|
||||
tw1 += fstride;
|
||||
tw2 += fstride*2;
|
||||
|
||||
Fout[m] = Complex( Fout->real() - .5*scratch[3].real() , Fout->imag() - .5*scratch[3].imag() );
|
||||
|
||||
scratch[0] *= epi3.imag();
|
||||
|
||||
*Fout += scratch[3];
|
||||
|
||||
Fout[m2] = Complex( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
|
||||
|
||||
Fout[m] += Complex( -scratch[0].imag(),scratch[0].real() );
|
||||
++Fout;
|
||||
}while(--k);
|
||||
}
|
||||
|
||||
void bfly5( Complex * Fout, const size_t fstride, const size_t m)
|
||||
{
|
||||
Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
|
||||
size_t u;
|
||||
Complex scratch[13];
|
||||
Complex * twiddles = &m_twiddles[0];
|
||||
Complex *tw;
|
||||
Complex ya,yb;
|
||||
ya = twiddles[fstride*m];
|
||||
yb = twiddles[fstride*2*m];
|
||||
|
||||
Fout0=Fout;
|
||||
Fout1=Fout0+m;
|
||||
Fout2=Fout0+2*m;
|
||||
Fout3=Fout0+3*m;
|
||||
Fout4=Fout0+4*m;
|
||||
|
||||
tw=twiddles;
|
||||
for ( u=0; u<m; ++u ) {
|
||||
scratch[0] = *Fout0;
|
||||
|
||||
scratch[1] = *Fout1 * tw[u*fstride];
|
||||
scratch[2] = *Fout2 * tw[2*u*fstride];
|
||||
scratch[3] = *Fout3 * tw[3*u*fstride];
|
||||
scratch[4] = *Fout4 * tw[4*u*fstride];
|
||||
|
||||
scratch[7] = scratch[1] + scratch[4];
|
||||
scratch[10] = scratch[1] - scratch[4];
|
||||
scratch[8] = scratch[2] + scratch[3];
|
||||
scratch[9] = scratch[2] - scratch[3];
|
||||
|
||||
*Fout0 += scratch[7];
|
||||
*Fout0 += scratch[8];
|
||||
|
||||
scratch[5] = scratch[0] + Complex(
|
||||
(scratch[7].real()*ya.real() ) + (scratch[8].real() *yb.real() ),
|
||||
(scratch[7].imag()*ya.real()) + (scratch[8].imag()*yb.real())
|
||||
);
|
||||
|
||||
scratch[6] = Complex(
|
||||
(scratch[10].imag()*ya.imag()) + (scratch[9].imag()*yb.imag()),
|
||||
-(scratch[10].real()*ya.imag()) - (scratch[9].real()*yb.imag())
|
||||
);
|
||||
|
||||
*Fout1 = scratch[5] - scratch[6];
|
||||
*Fout4 = scratch[5] + scratch[6];
|
||||
|
||||
scratch[11] = scratch[0] +
|
||||
Complex(
|
||||
(scratch[7].real()*yb.real()) + (scratch[8].real()*ya.real()),
|
||||
(scratch[7].imag()*yb.real()) + (scratch[8].imag()*ya.real())
|
||||
);
|
||||
|
||||
scratch[12] = Complex(
|
||||
-(scratch[10].imag()*yb.imag()) + (scratch[9].imag()*ya.imag()),
|
||||
(scratch[10].real()*yb.imag()) - (scratch[9].real()*ya.imag())
|
||||
);
|
||||
|
||||
*Fout2=scratch[11]+scratch[12];
|
||||
*Fout3=scratch[11]-scratch[12];
|
||||
|
||||
++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
|
||||
}
|
||||
}
|
||||
|
||||
/* perform the butterfly for one stage of a mixed radix FFT */
|
||||
void bfly_generic(
|
||||
Complex * Fout,
|
||||
const size_t fstride,
|
||||
int m,
|
||||
int p
|
||||
)
|
||||
{
|
||||
int u,k,q1,q;
|
||||
Complex * twiddles = &m_twiddles[0];
|
||||
Complex t;
|
||||
int Norig = m_nfft;
|
||||
Complex * scratchbuf = (Complex*)alloca(p*sizeof(Complex) );
|
||||
|
||||
for ( u=0; u<m; ++u ) {
|
||||
k=u;
|
||||
for ( q1=0 ; q1<p ; ++q1 ) {
|
||||
scratchbuf[q1] = Fout[ k ];
|
||||
k += m;
|
||||
}
|
||||
|
||||
k=u;
|
||||
for ( q1=0 ; q1<p ; ++q1 ) {
|
||||
int twidx=0;
|
||||
Fout[ k ] = scratchbuf[0];
|
||||
for (q=1;q<p;++q ) {
|
||||
twidx += fstride * k;
|
||||
if (twidx>=Norig) twidx-=Norig;
|
||||
t=scratchbuf[q] * twiddles[twidx];
|
||||
Fout[ k ] += t;
|
||||
}
|
||||
k += m;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int m_nfft;
|
||||
bool m_inverse;
|
||||
std::vector<Complex> m_twiddles;
|
||||
std::vector<int> m_stageRadix;
|
||||
std::vector<int> m_stageRemainder;
|
||||
};
|
||||
}
|
@ -19,3 +19,4 @@ ei_add_test(autodiff)
|
||||
ei_add_test(BVH)
|
||||
ei_add_test(matrixExponential)
|
||||
ei_add_test(alignedvector3)
|
||||
ei_add_test(FFT)
|
||||
|
85
unsupported/test/FFT.cpp
Normal file
85
unsupported/test/FFT.cpp
Normal file
@ -0,0 +1,85 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "main.h"
|
||||
#include <unsupported/Eigen/FFT.h>
|
||||
|
||||
//#include <iostream>
|
||||
//#include <cstdlib>
|
||||
//#include <typeinfo>
|
||||
|
||||
using namespace std;
|
||||
|
||||
template <class T>
|
||||
void test_fft(int nfft)
|
||||
{
|
||||
typedef typename Eigen::FFT<T>::Complex Complex;
|
||||
|
||||
//cout << "type:" << typeid(T).name() << " nfft:" << nfft;
|
||||
|
||||
FFT<T> fft;
|
||||
|
||||
vector<Complex> inbuf(nfft);
|
||||
vector<Complex> buf3(nfft);
|
||||
vector<Complex> outbuf(nfft);
|
||||
for (int k=0;k<nfft;++k)
|
||||
inbuf[k]= Complex(
|
||||
(T)(rand()/(double)RAND_MAX - .5),
|
||||
(T)(rand()/(double)RAND_MAX - .5) );
|
||||
fft.fwd( &outbuf[0] , &inbuf[0] ,nfft);
|
||||
fft.inv( &buf3[0] , &outbuf[0] ,nfft);
|
||||
|
||||
long double totalpower=0;
|
||||
long double difpower=0;
|
||||
for (int k0=0;k0<nfft;++k0) {
|
||||
complex<long double> acc = 0;
|
||||
long double phinc = 2*k0* M_PIl / nfft;
|
||||
for (int k1=0;k1<nfft;++k1) {
|
||||
complex<long double> x(inbuf[k1].real(),inbuf[k1].imag());
|
||||
acc += x * exp( complex<long double>(0,-k1*phinc) );
|
||||
}
|
||||
totalpower += norm(acc);
|
||||
complex<long double> x(outbuf[k0].real(),outbuf[k0].imag());
|
||||
complex<long double> dif = acc - x;
|
||||
difpower += norm(dif);
|
||||
}
|
||||
long double rmse = sqrt(difpower/totalpower);
|
||||
VERIFY( rmse < 1e-5 );// gross check
|
||||
|
||||
totalpower=0;
|
||||
difpower=0;
|
||||
for (int k=0;k<nfft;++k) {
|
||||
totalpower += norm( inbuf[k] );
|
||||
difpower += norm(inbuf[k] - buf3[k]);
|
||||
}
|
||||
rmse = sqrt(difpower/totalpower);
|
||||
VERIFY( rmse < 1e-5 );// gross check
|
||||
}
|
||||
|
||||
void test_FFT()
|
||||
{
|
||||
CALL_SUBTEST(( test_fft<float>(32) )); CALL_SUBTEST(( test_fft<double>(32) )); CALL_SUBTEST(( test_fft<long double>(32) ));
|
||||
CALL_SUBTEST(( test_fft<float>(1024) )); CALL_SUBTEST(( test_fft<double>(1024) )); CALL_SUBTEST(( test_fft<long double>(1024) ));
|
||||
CALL_SUBTEST(( test_fft<float>(2*3*4*5*7) )); CALL_SUBTEST(( test_fft<double>(2*3*4*5*7) )); CALL_SUBTEST(( test_fft<long double>(2*3*4*5*7) ));
|
||||
}
|
Loading…
Reference in New Issue
Block a user