fix a couple of issues making the eigensolver test compile and run without aborting

on an assert. Had to fix a stupid bug in Block -- very strange we hadn't hit it
before.

However the test still fails.
This commit is contained in:
Benoit Jacob 2008-06-02 02:06:33 +00:00
parent 001b01a290
commit 92b7e2d6a1
3 changed files with 8 additions and 8 deletions

View File

@ -90,7 +90,7 @@ template<typename MatrixType, int BlockRows, int BlockCols> class Block
// It is a row if and only if BlockRows==1 and BlockCols==MatrixType::ColsAtCompileTime,
// and it is a column if and only if BlockRows==MatrixType::RowsAtCompileTime and BlockCols==1,
// all other cases are invalid.
// The case a 1x1 matrix looks ambibuous, but the result is the same anyway.
// The case a 1x1 matrix seems ambiguous, but the result is the same anyway.
m_startRow( (BlockRows==1) && (BlockCols==MatrixType::ColsAtCompileTime) ? i : 0),
m_startCol( (BlockRows==MatrixType::RowsAtCompileTime) && (BlockCols==1) ? i : 0),
m_blockRows(matrix.rows()), // if it is a row, then m_blockRows has a fixed-size of 1, so no pb to try to overwrite it
@ -119,8 +119,8 @@ template<typename MatrixType, int BlockRows, int BlockCols> class Block
: m_matrix(matrix), m_startRow(startRow), m_startCol(startCol),
m_blockRows(blockRows), m_blockCols(blockCols)
{
ei_assert((RowsAtCompileTime==Dynamic || RowsAtCompileTime==1)
&& (ColsAtCompileTime==Dynamic || ColsAtCompileTime==1));
ei_assert((RowsAtCompileTime==Dynamic || RowsAtCompileTime==blockRows)
&& (ColsAtCompileTime==Dynamic || ColsAtCompileTime==blockCols));
ei_assert(startRow >= 0 && blockRows >= 1 && startRow + blockRows <= matrix.rows()
&& startCol >= 0 && blockCols >= 1 && startCol + blockCols <= matrix.cols());
}

View File

@ -88,7 +88,7 @@ static void ei_givens_rotation(Scalar a, Scalar b, Scalar& c, Scalar& s)
/** \internal
* Performs a QR step on a tridiagonal symmetric matrix represented as a
* pair of two vectors \a diag \a subdiag.
* pair of two vectors \a diag and \a subdiag.
*
* \param matA the input selfadjoint matrix
* \param hCoeffs returned Householder coefficients
@ -142,7 +142,7 @@ void SelfAdjointEigenSolver<MatrixType>::compute(const MatrixType& matrix)
Tridiagonalization<MatrixType> tridiag(m_eivec);
RealVectorType& diag = m_eivalues;
RealVectorType subdiag(n-1);
RealVectorTypeX subdiag(n-1);
diag = tridiag.diagonal();
subdiag = tridiag.subDiagonal();

View File

@ -38,14 +38,14 @@ template<typename MatrixType> void eigensolver(const MatrixType& m)
MatrixType a = MatrixType::random(rows,cols);
MatrixType covMat = a.adjoint() * a;
EigenSolver<MatrixType,true> eiSymm(covMat);
SelfAdjointEigenSolver<MatrixType> eiSymm(covMat);
VERIFY_IS_APPROX(covMat * eiSymm.eigenvectors(), eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal());
EigenSolver<MatrixType,false> eiNotSymmButSymm(covMat);
EigenSolver<MatrixType> eiNotSymmButSymm(covMat);
VERIFY_IS_APPROX((covMat.template cast<Complex>()) * (eiNotSymmButSymm.eigenvectors().template cast<Complex>()),
(eiNotSymmButSymm.eigenvectors().template cast<Complex>()) * (eiNotSymmButSymm.eigenvalues().asDiagonal()));
EigenSolver<MatrixType,false> eiNotSymm(a);
EigenSolver<MatrixType> eiNotSymm(a);
// VERIFY_IS_APPROX(a.template cast<Complex>() * eiNotSymm.eigenvectors().template cast<Complex>(),
// eiNotSymm.eigenvectors().template cast<Complex>() * eiNotSymm.eigenvalues().asDiagonal());