mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
Adding TensorLayoutSwapOp for sycl.
This commit is contained in:
parent
b1e312edd6
commit
91982b91c0
@ -91,28 +91,35 @@ ASSIGNCONVERT(, false)
|
||||
#undef ASSIGNCONVERT
|
||||
|
||||
/// specialisation of the \ref ConvertToDeviceExpression struct when the node
|
||||
/// type is either TensorForcedEvalOp or TensorEvalToOp
|
||||
/// type is TensorEvalToOp
|
||||
#define KERNELBROKERCONVERT(CVQual, Res, ExprNode)\
|
||||
template <typename Expr>\
|
||||
struct ConvertToDeviceExpression<CVQual ExprNode<Expr> > \
|
||||
: DeviceConvertor<ExprNode, Res, Expr>{};
|
||||
|
||||
/// specialisation of the \ref ConvertToDeviceExpression struct when the node type is TensorForcedEvalOp
|
||||
#define KERNELBROKERCONVERTFORCEDEVAL(CVQual)\
|
||||
template <typename Expr>\
|
||||
struct ConvertToDeviceExpression<CVQual TensorForcedEvalOp<Expr> > {\
|
||||
typedef CVQual TensorForcedEvalOp< typename ConvertToDeviceExpression<Expr>::Type> Type;\
|
||||
};
|
||||
KERNELBROKERCONVERTFORCEDEVAL(const)
|
||||
KERNELBROKERCONVERTFORCEDEVAL()
|
||||
#undef KERNELBROKERCONVERTFORCEDEVAL
|
||||
|
||||
|
||||
|
||||
KERNELBROKERCONVERT(const, true, TensorEvalToOp)
|
||||
KERNELBROKERCONVERT(, false, TensorEvalToOp)
|
||||
#undef KERNELBROKERCONVERT
|
||||
|
||||
/// specialisation of the \ref ConvertToDeviceExpression struct when the node types are TensorForcedEvalOp and TensorLayoutSwapOp
|
||||
#define KERNELBROKERCONVERTFORCEDEVALLAYOUTSWAP(CVQual, ExprNode)\
|
||||
template <typename Expr>\
|
||||
struct ConvertToDeviceExpression<CVQual ExprNode<Expr> > {\
|
||||
typedef CVQual ExprNode< typename ConvertToDeviceExpression<Expr>::Type> Type;\
|
||||
};
|
||||
|
||||
// TensorForcedEvalOp
|
||||
KERNELBROKERCONVERTFORCEDEVALLAYOUTSWAP(const,TensorForcedEvalOp)
|
||||
KERNELBROKERCONVERTFORCEDEVALLAYOUTSWAP(,TensorForcedEvalOp)
|
||||
|
||||
// TensorLayoutSwapOp
|
||||
KERNELBROKERCONVERTFORCEDEVALLAYOUTSWAP(const,TensorLayoutSwapOp)
|
||||
KERNELBROKERCONVERTFORCEDEVALLAYOUTSWAP(,TensorLayoutSwapOp)
|
||||
#undef KERNELBROKERCONVERTFORCEDEVALLAYOUTSWAP
|
||||
|
||||
|
||||
|
||||
/// specialisation of the \ref ConvertToDeviceExpression struct when the node type is TensorReductionOp
|
||||
#define KERNELBROKERCONVERTREDUCTION(CVQual)\
|
||||
template <typename OP, typename Dim, typename subExpr, template <class> class MakePointer_>\
|
||||
|
@ -223,7 +223,7 @@ struct ExprConstructor<CVQual TensorEvalToOp<OrigExpr, MakeGlobalPointer>, CVQua
|
||||
Type expr;\
|
||||
template <typename FuncDetector>\
|
||||
ExprConstructor(FuncDetector &funcD, const utility::tuple::Tuple<Params...> &t)\
|
||||
: nestedExpression(funcD.rhsExpr, t), buffer(t), expr(buffer.expr, nestedExpression.expr) {}\
|
||||
: nestedExpression(funcD.xprExpr, t), buffer(t), expr(buffer.expr, nestedExpression.expr) {}\
|
||||
};
|
||||
|
||||
EVALTO(const)
|
||||
@ -386,6 +386,25 @@ SYCLTENSORCHIPPINGOPEXPR()
|
||||
#undef SYCLTENSORCHIPPINGOPEXPR
|
||||
|
||||
|
||||
|
||||
// TensorLayoutSwapOp
|
||||
#define SYCLTENSORLAYOUTSWAPOPEXPR(CVQual)\
|
||||
template<typename OrigXprType, typename XprType, typename... Params>\
|
||||
struct ExprConstructor<CVQual TensorLayoutSwapOp <OrigXprType> , CVQual TensorLayoutSwapOp<XprType>, Params... >{\
|
||||
typedef ExprConstructor<OrigXprType, XprType, Params...> my_xpr_type;\
|
||||
typedef CVQual TensorLayoutSwapOp<typename my_xpr_type::Type> Type;\
|
||||
my_xpr_type xprExpr;\
|
||||
Type expr;\
|
||||
template <typename FuncDetector>\
|
||||
ExprConstructor(FuncDetector &funcD, const utility::tuple::Tuple<Params...> &t)\
|
||||
: xprExpr(funcD.xprExpr, t), expr(xprExpr.expr) {}\
|
||||
};
|
||||
|
||||
SYCLTENSORLAYOUTSWAPOPEXPR(const)
|
||||
SYCLTENSORLAYOUTSWAPOPEXPR()
|
||||
#undef SYCLTENSORLAYOUTSWAPOPEXPR
|
||||
|
||||
|
||||
/// template deduction for \ref ExprConstructor struct
|
||||
template <typename OrigExpr, typename IndexExpr, typename FuncD, typename... Params>
|
||||
auto createDeviceExpression(FuncD &funcD, const utility::tuple::Tuple<Params...> &t)
|
||||
|
@ -226,6 +226,21 @@ SYCLTENSORCHIPPINGOPEXTACC()
|
||||
#undef SYCLTENSORCHIPPINGOPEXTACC
|
||||
|
||||
|
||||
// specialisation of the \ref ExtractAccessor struct when the node type is
|
||||
/// TensorLayoutSwapOp.
|
||||
#define SYCLTENSORLAYOUTSWAPOPEXTACC(CVQual)\
|
||||
template<typename XprType, typename Dev>\
|
||||
struct ExtractAccessor<TensorEvaluator<CVQual TensorLayoutSwapOp<XprType>, Dev> >{\
|
||||
static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<CVQual TensorLayoutSwapOp<XprType>, Dev>& eval)\
|
||||
RETURN_CPP11(AccessorConstructor::getTuple(cgh, eval.impl()))\
|
||||
};
|
||||
|
||||
SYCLTENSORLAYOUTSWAPOPEXTACC(const)
|
||||
SYCLTENSORLAYOUTSWAPOPEXTACC()
|
||||
#undef SYCLTENSORLAYOUTSWAPOPEXTACC
|
||||
|
||||
|
||||
|
||||
/// template deduction for \ref ExtractAccessor
|
||||
template <typename Evaluator>
|
||||
auto createTupleOfAccessors(cl::sycl::handler& cgh, const Evaluator& eval)
|
||||
|
@ -39,7 +39,6 @@ template <typename Evaluator> struct FunctorExtractor{
|
||||
EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
|
||||
FunctorExtractor(const Evaluator& expr)
|
||||
: m_dimensions(expr.dimensions()) {}
|
||||
|
||||
};
|
||||
|
||||
/// specialisation of the \ref FunctorExtractor struct when the node type does not require anything
|
||||
@ -143,19 +142,23 @@ SYCLEXTRFUNCASSIGNOP(const)
|
||||
SYCLEXTRFUNCASSIGNOP()
|
||||
#undef SYCLEXTRFUNCASSIGNOP
|
||||
|
||||
/// specialisation of the \ref FunctorExtractor struct when the node type is
|
||||
/// TensorEvalToOp, This is an specialisation without OP so it has to be separated.
|
||||
#define SYCLEXTRFUNCEVALTOOP(CVQual)\
|
||||
template <typename RHSExpr, typename Dev>\
|
||||
struct FunctorExtractor<TensorEvaluator<CVQual TensorEvalToOp<RHSExpr>, Dev> > {\
|
||||
FunctorExtractor<TensorEvaluator<RHSExpr, Dev> > rhsExpr;\
|
||||
FunctorExtractor(const TensorEvaluator<CVQual TensorEvalToOp<RHSExpr>, Dev>& expr)\
|
||||
: rhsExpr(expr.impl()) {}\
|
||||
/// specialisation of the \ref FunctorExtractor struct when the node types are
|
||||
/// TensorEvalToOp, TensorLayoutSwapOp. This is an specialisation without OP so it has to be separated.
|
||||
#define SYCLEXTRFUNCEVALTOOPSWAPLAYOUT(CVQual, ExprNode)\
|
||||
template <typename Expr, typename Dev>\
|
||||
struct FunctorExtractor<TensorEvaluator<CVQual ExprNode<Expr>, Dev> > {\
|
||||
FunctorExtractor<TensorEvaluator<Expr, Dev> > xprExpr;\
|
||||
FunctorExtractor(const TensorEvaluator<CVQual ExprNode<Expr>, Dev>& expr)\
|
||||
: xprExpr(expr.impl()) {}\
|
||||
};
|
||||
//TensorEvalToOp
|
||||
SYCLEXTRFUNCEVALTOOPSWAPLAYOUT(const, TensorEvalToOp)
|
||||
SYCLEXTRFUNCEVALTOOPSWAPLAYOUT(, TensorEvalToOp)
|
||||
// TensorLayoutSwapOp
|
||||
SYCLEXTRFUNCEVALTOOPSWAPLAYOUT(const, TensorLayoutSwapOp)
|
||||
SYCLEXTRFUNCEVALTOOPSWAPLAYOUT(, TensorLayoutSwapOp)
|
||||
|
||||
SYCLEXTRFUNCEVALTOOP(const)
|
||||
SYCLEXTRFUNCEVALTOOP()
|
||||
#undef SYCLEXTRFUNCEVALTOOP
|
||||
#undef SYCLEXTRFUNCEVALTOOPSWAPLAYOUT
|
||||
|
||||
template<typename Dim, size_t NumOutputDim> struct DimConstr {
|
||||
template<typename InDim>
|
||||
|
@ -94,15 +94,17 @@ SYCLFORCEDEVALLEAFCOUNT()
|
||||
#undef SYCLFORCEDEVALLEAFCOUNT
|
||||
|
||||
/// specialisation of the \ref LeafCount struct when the node type is TensorEvalToOp
|
||||
#define EVALTOLEAFCOUNT(CVQual)\
|
||||
#define EVALTOLAYOUTSWAPLEAFCOUNT(CVQual , ExprNode, Num)\
|
||||
template <typename Expr>\
|
||||
struct LeafCount<CVQual TensorEvalToOp<Expr> > {\
|
||||
static const size_t Count = 1 + CategoryCount<Expr>::Count;\
|
||||
struct LeafCount<CVQual ExprNode<Expr> > {\
|
||||
static const size_t Count = Num + CategoryCount<Expr>::Count;\
|
||||
};
|
||||
|
||||
EVALTOLEAFCOUNT(const)
|
||||
EVALTOLEAFCOUNT()
|
||||
#undef EVALTOLEAFCOUNT
|
||||
EVALTOLAYOUTSWAPLEAFCOUNT(const, TensorEvalToOp, 1)
|
||||
EVALTOLAYOUTSWAPLEAFCOUNT(, TensorEvalToOp, 1)
|
||||
EVALTOLAYOUTSWAPLEAFCOUNT(const, TensorLayoutSwapOp, 0)
|
||||
EVALTOLAYOUTSWAPLEAFCOUNT(, TensorLayoutSwapOp, 0)
|
||||
#undef EVALTOLAYOUTSWAPLEAFCOUNT
|
||||
|
||||
/// specialisation of the \ref LeafCount struct when the node type is const TensorReductionOp
|
||||
#define REDUCTIONLEAFCOUNT(CVQual)\
|
||||
|
@ -144,16 +144,19 @@ FORCEDEVAL()
|
||||
#undef FORCEDEVAL
|
||||
|
||||
/// specialisation of the \ref PlaceHolderExpression when the node is
|
||||
/// TensorEvalToOp
|
||||
#define EVALTO(CVQual)\
|
||||
/// TensorEvalToOp, TensorLayoutSwapOp
|
||||
#define EVALTOLAYOUTSWAP(CVQual, ExprNode)\
|
||||
template <typename Expr, size_t N>\
|
||||
struct PlaceHolderExpression<CVQual TensorEvalToOp<Expr>, N> {\
|
||||
typedef CVQual TensorEvalToOp<typename CalculateIndex <N, Expr>::ArgType> Type;\
|
||||
struct PlaceHolderExpression<CVQual ExprNode<Expr>, N> {\
|
||||
typedef CVQual ExprNode<typename CalculateIndex <N, Expr>::ArgType> Type;\
|
||||
};
|
||||
|
||||
EVALTO(const)
|
||||
EVALTO()
|
||||
#undef EVALTO
|
||||
EVALTOLAYOUTSWAP(const, TensorEvalToOp)
|
||||
EVALTOLAYOUTSWAP(, TensorEvalToOp)
|
||||
EVALTOLAYOUTSWAP(const, TensorLayoutSwapOp)
|
||||
EVALTOLAYOUTSWAP(, TensorLayoutSwapOp)
|
||||
|
||||
#undef EVALTOLAYOUTSWAP
|
||||
|
||||
|
||||
/// specialisation of the \ref PlaceHolderExpression when the node is
|
||||
|
@ -168,6 +168,7 @@ if(EIGEN_TEST_CXX11)
|
||||
ei_add_test_sycl(cxx11_tensor_striding_sycl "-std=c++11")
|
||||
ei_add_test_sycl(cxx11_tensor_chipping_sycl "-std=c++11")
|
||||
ei_add_test_sycl(cxx11_tensor_patch_sycl "-std=c++11")
|
||||
ei_add_test_sycl(cxx11_tensor_layout_swap_sycl "-std=c++11")
|
||||
endif(EIGEN_TEST_SYCL)
|
||||
# It should be safe to always run these tests as there is some fallback code for
|
||||
# older compiler that don't support cxx11.
|
||||
|
126
unsupported/test/cxx11_tensor_layout_swap_sycl.cpp
Normal file
126
unsupported/test/cxx11_tensor_layout_swap_sycl.cpp
Normal file
@ -0,0 +1,126 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2016
|
||||
// Mehdi Goli Codeplay Software Ltd.
|
||||
// Ralph Potter Codeplay Software Ltd.
|
||||
// Luke Iwanski Codeplay Software Ltd.
|
||||
// Contact: <eigen@codeplay.com>
|
||||
// Benoit Steiner <benoit.steiner.goog@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#define EIGEN_TEST_NO_LONGDOUBLE
|
||||
#define EIGEN_TEST_NO_COMPLEX
|
||||
#define EIGEN_TEST_FUNC cxx11_tensor_layout_swap_sycl
|
||||
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
|
||||
#define EIGEN_USE_SYCL
|
||||
|
||||
#include "main.h"
|
||||
|
||||
#include <Eigen/CXX11/Tensor>
|
||||
|
||||
using Eigen::Tensor;
|
||||
|
||||
template <typename DataType, typename IndexType>
|
||||
static void test_simple_swap_sycl(const Eigen::SyclDevice& sycl_device)
|
||||
{
|
||||
IndexType sizeDim1 = 2;
|
||||
IndexType sizeDim2 = 3;
|
||||
IndexType sizeDim3 = 7;
|
||||
array<IndexType, 3> tensorColRange = {{sizeDim1, sizeDim2, sizeDim3}};
|
||||
array<IndexType, 3> tensorRowRange = {{sizeDim3, sizeDim2, sizeDim1}};
|
||||
|
||||
|
||||
Tensor<DataType, 3, ColMajor, IndexType> tensor1(tensorColRange);
|
||||
Tensor<DataType, 3, RowMajor, IndexType> tensor2(tensorRowRange);
|
||||
tensor1.setRandom();
|
||||
|
||||
DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor1.size()*sizeof(DataType)));
|
||||
DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(tensor2.size()*sizeof(DataType)));
|
||||
TensorMap<Tensor<DataType, 3, ColMajor, IndexType>> gpu1(gpu_data1, tensorColRange);
|
||||
TensorMap<Tensor<DataType, 3, RowMajor, IndexType>> gpu2(gpu_data2, tensorRowRange);
|
||||
|
||||
sycl_device.memcpyHostToDevice(gpu_data1, tensor1.data(),(tensor1.size())*sizeof(DataType));
|
||||
gpu2.device(sycl_device)=gpu1.swap_layout();
|
||||
sycl_device.memcpyDeviceToHost(tensor2.data(), gpu_data2,(tensor2.size())*sizeof(DataType));
|
||||
|
||||
|
||||
// Tensor<float, 3, ColMajor> tensor(2,3,7);
|
||||
//tensor.setRandom();
|
||||
|
||||
// Tensor<float, 3, RowMajor> tensor2 = tensor.swap_layout();
|
||||
VERIFY_IS_EQUAL(tensor1.dimension(0), tensor2.dimension(2));
|
||||
VERIFY_IS_EQUAL(tensor1.dimension(1), tensor2.dimension(1));
|
||||
VERIFY_IS_EQUAL(tensor1.dimension(2), tensor2.dimension(0));
|
||||
|
||||
for (IndexType i = 0; i < 2; ++i) {
|
||||
for (IndexType j = 0; j < 3; ++j) {
|
||||
for (IndexType k = 0; k < 7; ++k) {
|
||||
VERIFY_IS_EQUAL(tensor1(i,j,k), tensor2(k,j,i));
|
||||
}
|
||||
}
|
||||
}
|
||||
sycl_device.deallocate(gpu_data1);
|
||||
sycl_device.deallocate(gpu_data2);
|
||||
}
|
||||
|
||||
template <typename DataType, typename IndexType>
|
||||
static void test_swap_as_lvalue_sycl(const Eigen::SyclDevice& sycl_device)
|
||||
{
|
||||
|
||||
IndexType sizeDim1 = 2;
|
||||
IndexType sizeDim2 = 3;
|
||||
IndexType sizeDim3 = 7;
|
||||
array<IndexType, 3> tensorColRange = {{sizeDim1, sizeDim2, sizeDim3}};
|
||||
array<IndexType, 3> tensorRowRange = {{sizeDim3, sizeDim2, sizeDim1}};
|
||||
|
||||
Tensor<DataType, 3, ColMajor, IndexType> tensor1(tensorColRange);
|
||||
Tensor<DataType, 3, RowMajor, IndexType> tensor2(tensorRowRange);
|
||||
tensor1.setRandom();
|
||||
|
||||
DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor1.size()*sizeof(DataType)));
|
||||
DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(tensor2.size()*sizeof(DataType)));
|
||||
TensorMap<Tensor<DataType, 3, ColMajor, IndexType>> gpu1(gpu_data1, tensorColRange);
|
||||
TensorMap<Tensor<DataType, 3, RowMajor, IndexType>> gpu2(gpu_data2, tensorRowRange);
|
||||
|
||||
sycl_device.memcpyHostToDevice(gpu_data1, tensor1.data(),(tensor1.size())*sizeof(DataType));
|
||||
gpu2.swap_layout().device(sycl_device)=gpu1;
|
||||
sycl_device.memcpyDeviceToHost(tensor2.data(), gpu_data2,(tensor2.size())*sizeof(DataType));
|
||||
|
||||
|
||||
// Tensor<float, 3, ColMajor> tensor(2,3,7);
|
||||
// tensor.setRandom();
|
||||
|
||||
//Tensor<float, 3, RowMajor> tensor2(7,3,2);
|
||||
// tensor2.swap_layout() = tensor;
|
||||
VERIFY_IS_EQUAL(tensor1.dimension(0), tensor2.dimension(2));
|
||||
VERIFY_IS_EQUAL(tensor1.dimension(1), tensor2.dimension(1));
|
||||
VERIFY_IS_EQUAL(tensor1.dimension(2), tensor2.dimension(0));
|
||||
|
||||
for (IndexType i = 0; i < 2; ++i) {
|
||||
for (IndexType j = 0; j < 3; ++j) {
|
||||
for (IndexType k = 0; k < 7; ++k) {
|
||||
VERIFY_IS_EQUAL(tensor1(i,j,k), tensor2(k,j,i));
|
||||
}
|
||||
}
|
||||
}
|
||||
sycl_device.deallocate(gpu_data1);
|
||||
sycl_device.deallocate(gpu_data2);
|
||||
}
|
||||
|
||||
|
||||
template<typename DataType, typename dev_Selector> void sycl_tensor_layout_swap_test_per_device(dev_Selector s){
|
||||
QueueInterface queueInterface(s);
|
||||
auto sycl_device = Eigen::SyclDevice(&queueInterface);
|
||||
test_simple_swap_sycl<DataType, int64_t>(sycl_device);
|
||||
test_swap_as_lvalue_sycl<DataType, int64_t>(sycl_device);
|
||||
}
|
||||
void test_cxx11_tensor_layout_swap_sycl()
|
||||
{
|
||||
for (const auto& device :Eigen::get_sycl_supported_devices()) {
|
||||
CALL_SUBTEST(sycl_tensor_layout_swap_test_per_device<float>(device));
|
||||
}
|
||||
}
|
@ -12,7 +12,6 @@
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
|
||||
#define EIGEN_TEST_NO_LONGDOUBLE
|
||||
#define EIGEN_TEST_NO_COMPLEX
|
||||
#define EIGEN_TEST_FUNC cxx11_tensor_patch_sycl
|
||||
@ -80,10 +79,12 @@ static void test_simple_patch_sycl(const Eigen::SyclDevice& sycl_device){
|
||||
for (int i = 0; i < tensor.size(); ++i) {
|
||||
VERIFY_IS_EQUAL(tensor.data()[i], no_patch.data()[i]);
|
||||
}
|
||||
|
||||
patch_dims[0] = 2;
|
||||
patch_dims[1] = 3;
|
||||
patch_dims[2] = 5;
|
||||
patch_dims[3] = 7;
|
||||
|
||||
if (DataLayout == ColMajor) {
|
||||
patchTensorRange = {{sizeDim1,sizeDim2,sizeDim3,sizeDim4,1}};
|
||||
}else{
|
||||
@ -114,15 +115,11 @@ static void test_simple_patch_sycl(const Eigen::SyclDevice& sycl_device){
|
||||
for (int i = 0; i < tensor.size(); ++i) {
|
||||
VERIFY_IS_EQUAL(tensor.data()[i], single_patch.data()[i]);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
patch_dims[0] = 1;
|
||||
patch_dims[1] = 2;
|
||||
patch_dims[2] = 2;
|
||||
patch_dims[3] = 1;
|
||||
|
||||
if (DataLayout == ColMajor) {
|
||||
patchTensorRange = {{1,2,2,1,2*2*4*7}};
|
||||
}else{
|
||||
|
Loading…
Reference in New Issue
Block a user