mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
bug #785: Make Cholesky decomposition work for empty matrices
This commit is contained in:
parent
0ea7ae7213
commit
919414b9fe
@ -304,7 +304,8 @@ template<> struct ldlt_inplace<Lower>
|
|||||||
if (size <= 1)
|
if (size <= 1)
|
||||||
{
|
{
|
||||||
transpositions.setIdentity();
|
transpositions.setIdentity();
|
||||||
if (numext::real(mat.coeff(0,0)) > static_cast<RealScalar>(0) ) sign = PositiveSemiDef;
|
if(size==0) sign = ZeroSign;
|
||||||
|
else if (numext::real(mat.coeff(0,0)) > static_cast<RealScalar>(0) ) sign = PositiveSemiDef;
|
||||||
else if (numext::real(mat.coeff(0,0)) < static_cast<RealScalar>(0)) sign = NegativeSemiDef;
|
else if (numext::real(mat.coeff(0,0)) < static_cast<RealScalar>(0)) sign = NegativeSemiDef;
|
||||||
else sign = ZeroSign;
|
else sign = ZeroSign;
|
||||||
return true;
|
return true;
|
||||||
|
@ -160,7 +160,7 @@ rcond_estimate_helper(typename Decomposition::RealScalar matrix_norm, const Deco
|
|||||||
{
|
{
|
||||||
typedef typename Decomposition::RealScalar RealScalar;
|
typedef typename Decomposition::RealScalar RealScalar;
|
||||||
eigen_assert(dec.rows() == dec.cols());
|
eigen_assert(dec.rows() == dec.cols());
|
||||||
if (dec.rows() == 0) return RealScalar(1);
|
if (dec.rows() == 0) return RealScalar(1)/RealScalar(0);
|
||||||
if (matrix_norm == RealScalar(0)) return RealScalar(0);
|
if (matrix_norm == RealScalar(0)) return RealScalar(0);
|
||||||
if (dec.rows() == 1) return RealScalar(1);
|
if (dec.rows() == 1) return RealScalar(1);
|
||||||
const RealScalar inverse_matrix_norm = rcond_invmatrix_L1_norm_estimate(dec);
|
const RealScalar inverse_matrix_norm = rcond_invmatrix_L1_norm_estimate(dec);
|
||||||
|
@ -19,6 +19,7 @@
|
|||||||
|
|
||||||
template<typename MatrixType, int UpLo>
|
template<typename MatrixType, int UpLo>
|
||||||
typename MatrixType::RealScalar matrix_l1_norm(const MatrixType& m) {
|
typename MatrixType::RealScalar matrix_l1_norm(const MatrixType& m) {
|
||||||
|
if(m.cols()==0) return typename MatrixType::RealScalar(0);
|
||||||
MatrixType symm = m.template selfadjointView<UpLo>();
|
MatrixType symm = m.template selfadjointView<UpLo>();
|
||||||
return symm.cwiseAbs().colwise().sum().maxCoeff();
|
return symm.cwiseAbs().colwise().sum().maxCoeff();
|
||||||
}
|
}
|
||||||
@ -96,7 +97,7 @@ template<typename MatrixType> void cholesky(const MatrixType& m)
|
|||||||
RealScalar rcond_est = chollo.rcond();
|
RealScalar rcond_est = chollo.rcond();
|
||||||
// Verify that the estimated condition number is within a factor of 10 of the
|
// Verify that the estimated condition number is within a factor of 10 of the
|
||||||
// truth.
|
// truth.
|
||||||
VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10);
|
VERIFY(rcond_est >= rcond / 10 && rcond_est <= rcond * 10);
|
||||||
|
|
||||||
// test the upper mode
|
// test the upper mode
|
||||||
LLT<SquareMatrixType,Upper> cholup(symmUp);
|
LLT<SquareMatrixType,Upper> cholup(symmUp);
|
||||||
@ -112,12 +113,12 @@ template<typename MatrixType> void cholesky(const MatrixType& m)
|
|||||||
rcond = (RealScalar(1) / matrix_l1_norm<MatrixType, Upper>(symmUp)) /
|
rcond = (RealScalar(1) / matrix_l1_norm<MatrixType, Upper>(symmUp)) /
|
||||||
matrix_l1_norm<MatrixType, Upper>(symmUp_inverse);
|
matrix_l1_norm<MatrixType, Upper>(symmUp_inverse);
|
||||||
rcond_est = cholup.rcond();
|
rcond_est = cholup.rcond();
|
||||||
VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10);
|
VERIFY(rcond_est >= rcond / 10 && rcond_est <= rcond * 10);
|
||||||
|
|
||||||
|
|
||||||
MatrixType neg = -symmLo;
|
MatrixType neg = -symmLo;
|
||||||
chollo.compute(neg);
|
chollo.compute(neg);
|
||||||
VERIFY(chollo.info()==NumericalIssue);
|
VERIFY(neg.size()==0 || chollo.info()==NumericalIssue);
|
||||||
|
|
||||||
VERIFY_IS_APPROX(MatrixType(chollo.matrixL().transpose().conjugate()), MatrixType(chollo.matrixU()));
|
VERIFY_IS_APPROX(MatrixType(chollo.matrixL().transpose().conjugate()), MatrixType(chollo.matrixU()));
|
||||||
VERIFY_IS_APPROX(MatrixType(chollo.matrixU().transpose().conjugate()), MatrixType(chollo.matrixL()));
|
VERIFY_IS_APPROX(MatrixType(chollo.matrixU().transpose().conjugate()), MatrixType(chollo.matrixL()));
|
||||||
@ -166,7 +167,7 @@ template<typename MatrixType> void cholesky(const MatrixType& m)
|
|||||||
RealScalar rcond_est = ldltlo.rcond();
|
RealScalar rcond_est = ldltlo.rcond();
|
||||||
// Verify that the estimated condition number is within a factor of 10 of the
|
// Verify that the estimated condition number is within a factor of 10 of the
|
||||||
// truth.
|
// truth.
|
||||||
VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10);
|
VERIFY(rcond_est >= rcond / 10 && rcond_est <= rcond * 10);
|
||||||
|
|
||||||
|
|
||||||
LDLT<SquareMatrixType,Upper> ldltup(symmUp);
|
LDLT<SquareMatrixType,Upper> ldltup(symmUp);
|
||||||
@ -183,7 +184,7 @@ template<typename MatrixType> void cholesky(const MatrixType& m)
|
|||||||
rcond = (RealScalar(1) / matrix_l1_norm<MatrixType, Upper>(symmUp)) /
|
rcond = (RealScalar(1) / matrix_l1_norm<MatrixType, Upper>(symmUp)) /
|
||||||
matrix_l1_norm<MatrixType, Upper>(symmUp_inverse);
|
matrix_l1_norm<MatrixType, Upper>(symmUp_inverse);
|
||||||
rcond_est = ldltup.rcond();
|
rcond_est = ldltup.rcond();
|
||||||
VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10);
|
VERIFY(rcond_est >= rcond / 10 && rcond_est <= rcond * 10);
|
||||||
|
|
||||||
VERIFY_IS_APPROX(MatrixType(ldltlo.matrixL().transpose().conjugate()), MatrixType(ldltlo.matrixU()));
|
VERIFY_IS_APPROX(MatrixType(ldltlo.matrixL().transpose().conjugate()), MatrixType(ldltlo.matrixU()));
|
||||||
VERIFY_IS_APPROX(MatrixType(ldltlo.matrixU().transpose().conjugate()), MatrixType(ldltlo.matrixL()));
|
VERIFY_IS_APPROX(MatrixType(ldltlo.matrixU().transpose().conjugate()), MatrixType(ldltlo.matrixL()));
|
||||||
@ -507,6 +508,11 @@ EIGEN_DECLARE_TEST(cholesky)
|
|||||||
CALL_SUBTEST_6( cholesky_cplx(MatrixXcd(s,s)) );
|
CALL_SUBTEST_6( cholesky_cplx(MatrixXcd(s,s)) );
|
||||||
TEST_SET_BUT_UNUSED_VARIABLE(s)
|
TEST_SET_BUT_UNUSED_VARIABLE(s)
|
||||||
}
|
}
|
||||||
|
// empty matrix, regression test for Bug 785:
|
||||||
|
CALL_SUBTEST_2( cholesky(MatrixXd(0,0)) );
|
||||||
|
|
||||||
|
// This does not work yet:
|
||||||
|
// CALL_SUBTEST_2( cholesky(Matrix<double,0,0>()) );
|
||||||
|
|
||||||
CALL_SUBTEST_4( cholesky_verify_assert<Matrix3f>() );
|
CALL_SUBTEST_4( cholesky_verify_assert<Matrix3f>() );
|
||||||
CALL_SUBTEST_7( cholesky_verify_assert<Matrix3d>() );
|
CALL_SUBTEST_7( cholesky_verify_assert<Matrix3d>() );
|
||||||
|
Loading…
Reference in New Issue
Block a user