mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-02-05 17:50:26 +08:00
ComplexSchur: compute shift more stably, introduce exceptional shifts.
Both the new computation of the eigenvalues of a 2x2 block and the exceptional shifts are taken from EISPACK routine COMQR.
This commit is contained in:
parent
53bae6b3f8
commit
90e4a605ef
@ -154,6 +154,14 @@ void ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool skipU)
|
||||
m_matT = hess.matrixH();
|
||||
if(!skipU) m_matU = hess.matrixQ();
|
||||
|
||||
|
||||
// Reduce the Hessenberg matrix m_matT to triangular form by QR iteration.
|
||||
|
||||
// The matrix m_matT is divided in three parts.
|
||||
// Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
|
||||
// Rows il,...,iu is the part we are working on (the active submatrix).
|
||||
// Rows iu+1,...,end are already brought in triangular form.
|
||||
|
||||
int iu = m_matT.cols() - 1;
|
||||
int il;
|
||||
RealScalar d,sd,sf;
|
||||
@ -164,7 +172,7 @@ void ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool skipU)
|
||||
int iter = 0;
|
||||
while(true)
|
||||
{
|
||||
//locate the range in which to iterate
|
||||
// find iu, the bottom row of the active submatrix
|
||||
while(iu > 0)
|
||||
{
|
||||
d = ei_norm1(m_matT.coeff(iu,iu)) + ei_norm1(m_matT.coeff(iu-1,iu-1));
|
||||
@ -187,6 +195,7 @@ void ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool skipU)
|
||||
return;
|
||||
}
|
||||
|
||||
// find il, the top row of the active submatrix
|
||||
il = iu-1;
|
||||
while(il > 0)
|
||||
{
|
||||
@ -202,15 +211,16 @@ void ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool skipU)
|
||||
|
||||
if( il != 0 ) m_matT.coeffRef(il,il-1) = Complex(0);
|
||||
|
||||
// compute the shift (the normalization by sf is to avoid under/overflow)
|
||||
// compute the shift kappa as one of the eigenvalues of the 2x2
|
||||
// diagonal block on the bottom of the active submatrix
|
||||
|
||||
Matrix<Scalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1);
|
||||
sf = t.cwiseAbs().sum();
|
||||
t /= sf;
|
||||
t /= sf; // the normalization by sf is to avoid under/overflow
|
||||
|
||||
c = t.determinant();
|
||||
b = t.diagonal().sum();
|
||||
|
||||
disc = ei_sqrt(b*b - RealScalar(4)*c);
|
||||
b = t.coeff(0,0) + t.coeff(1,1);
|
||||
c = t.coeff(0,0) - t.coeff(1,1);
|
||||
disc = ei_sqrt(c*c + RealScalar(4)*t.coeff(0,1)*t.coeff(1,0));
|
||||
|
||||
r1 = (b+disc)/RealScalar(2);
|
||||
r2 = (b-disc)/RealScalar(2);
|
||||
@ -224,6 +234,12 @@ void ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool skipU)
|
||||
kappa = sf * r1;
|
||||
else
|
||||
kappa = sf * r2;
|
||||
|
||||
if (iter == 10 || iter == 20)
|
||||
{
|
||||
// exceptional shift, taken from http://www.netlib.org/eispack/comqr.f
|
||||
kappa = ei_abs(ei_real(m_matT.coeff(iu,iu-1))) + ei_abs(ei_real(m_matT.coeff(iu-1,iu-2)));
|
||||
}
|
||||
|
||||
// perform the QR step using Givens rotations
|
||||
PlanarRotation<Complex> rot;
|
||||
@ -246,18 +262,6 @@ void ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool skipU)
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME : is it necessary ?
|
||||
/*
|
||||
for(int i=0 ; i<n ; i++)
|
||||
for(int j=0 ; j<n ; j++)
|
||||
{
|
||||
if(ei_abs(ei_real(m_matT.coeff(i,j))) < eps)
|
||||
ei_real_ref(m_matT.coeffRef(i,j)) = 0;
|
||||
if(ei_imag(ei_abs(m_matT.coeff(i,j))) < eps)
|
||||
ei_imag_ref(m_matT.coeffRef(i,j)) = 0;
|
||||
}
|
||||
*/
|
||||
|
||||
m_isInitialized = true;
|
||||
m_matUisUptodate = !skipU;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user