mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-03-19 18:40:38 +08:00
extend the sparse matrix assembly benchmark
This commit is contained in:
parent
af31345df3
commit
8f3e33581e
@ -27,23 +27,23 @@ typedef SparseMatrix<Scalar> EigenSparseMatrix;
|
||||
|
||||
void fillMatrix(float density, int rows, int cols, EigenSparseMatrix& dst)
|
||||
{
|
||||
dst.startFill(rows*cols*density);
|
||||
dst.reserve(rows*cols*density);
|
||||
for(int j = 0; j < cols; j++)
|
||||
{
|
||||
for(int i = 0; i < rows; i++)
|
||||
{
|
||||
Scalar v = (ei_random<float>(0,1) < density) ? ei_random<Scalar>() : 0;
|
||||
if (v!=0)
|
||||
dst.fillrand(i,j) = v;
|
||||
dst.insert(i,j) = v;
|
||||
}
|
||||
}
|
||||
dst.endFill();
|
||||
dst.finalize();
|
||||
}
|
||||
|
||||
void fillMatrix2(int nnzPerCol, int rows, int cols, EigenSparseMatrix& dst)
|
||||
{
|
||||
std::cout << "alloc " << nnzPerCol*cols << "\n";
|
||||
dst.startFill(nnzPerCol*cols);
|
||||
dst.reserve(nnzPerCol*cols);
|
||||
for(int j = 0; j < cols; j++)
|
||||
{
|
||||
std::set<int> aux;
|
||||
@ -54,10 +54,10 @@ void fillMatrix2(int nnzPerCol, int rows, int cols, EigenSparseMatrix& dst)
|
||||
k = ei_random<int>(0,rows-1);
|
||||
aux.insert(k);
|
||||
|
||||
dst.fillrand(k,j) = ei_random<Scalar>();
|
||||
dst.insert(k,j) = ei_random<Scalar>();
|
||||
}
|
||||
}
|
||||
dst.endFill();
|
||||
dst.finalize();
|
||||
}
|
||||
|
||||
void eiToDense(const EigenSparseMatrix& src, DenseMatrix& dst)
|
||||
|
@ -12,7 +12,15 @@
|
||||
#endif
|
||||
|
||||
#ifndef REPEAT
|
||||
#define REPEAT 1
|
||||
#define REPEAT 2
|
||||
#endif
|
||||
|
||||
#ifndef NBTRIES
|
||||
#define NBTRIES 2
|
||||
#endif
|
||||
|
||||
#ifndef KK
|
||||
#define KK 10
|
||||
#endif
|
||||
|
||||
#ifndef NOGOOGLE
|
||||
@ -22,7 +30,7 @@
|
||||
|
||||
#include "BenchSparseUtil.h"
|
||||
|
||||
#define CHECK_MEM
|
||||
#define CHECK_MEM
|
||||
// #define CHECK_MEM std/**/::cout << "check mem\n"; getchar();
|
||||
|
||||
#define BENCH(X) \
|
||||
@ -37,9 +45,13 @@ typedef std::vector<Vector2i> Coordinates;
|
||||
typedef std::vector<float> Values;
|
||||
|
||||
EIGEN_DONT_INLINE Scalar* setinnerrand_eigen(const Coordinates& coords, const Values& vals);
|
||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_dynamic(const Coordinates& coords, const Values& vals);
|
||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_compact(const Coordinates& coords, const Values& vals);
|
||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_sumeq(const Coordinates& coords, const Values& vals);
|
||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, const Values& vals);
|
||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords, const Values& vals);
|
||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords, const Values& vals);
|
||||
EIGEN_DONT_INLINE Scalar* setrand_scipy(const Coordinates& coords, const Values& vals);
|
||||
EIGEN_DONT_INLINE Scalar* setrand_ublas_mapped(const Coordinates& coords, const Values& vals);
|
||||
EIGEN_DONT_INLINE Scalar* setrand_ublas_coord(const Coordinates& coords, const Values& vals);
|
||||
EIGEN_DONT_INLINE Scalar* setrand_ublas_compressed(const Coordinates& coords, const Values& vals);
|
||||
@ -50,17 +62,36 @@ int main(int argc, char *argv[])
|
||||
{
|
||||
int rows = SIZE;
|
||||
int cols = SIZE;
|
||||
bool fullyrand = false;
|
||||
//float density = float(NBPERROW)/float(SIZE);
|
||||
|
||||
bool fullyrand = true;
|
||||
|
||||
BenchTimer timer;
|
||||
Coordinates coords;
|
||||
Values values;
|
||||
if(fullyrand)
|
||||
{
|
||||
for (int i=0; i<cols*NBPERROW; ++i)
|
||||
Coordinates pool;
|
||||
pool.reserve(cols*NBPERROW);
|
||||
std::cerr << "fill pool" << "\n";
|
||||
for (int i=0; i<cols*NBPERROW; )
|
||||
{
|
||||
coords.push_back(Vector2i(ei_random<int>(0,rows-1),ei_random<int>(0,cols-1)));
|
||||
// DynamicSparseMatrix<int> stencil(SIZE,SIZE);
|
||||
Vector2i ij(ei_random<int>(0,rows-1),ei_random<int>(0,cols-1));
|
||||
// if(stencil.coeffRef(ij.x(), ij.y())==0)
|
||||
{
|
||||
// stencil.coeffRef(ij.x(), ij.y()) = 1;
|
||||
pool.push_back(ij);
|
||||
|
||||
}
|
||||
++i;
|
||||
}
|
||||
std::cerr << "pool ok" << "\n";
|
||||
int n = cols*NBPERROW*KK;
|
||||
coords.reserve(n);
|
||||
values.reserve(n);
|
||||
for (int i=0; i<n; ++i)
|
||||
{
|
||||
int i = ei_random<int>(0,pool.size());
|
||||
coords.push_back(pool[i]);
|
||||
values.push_back(ei_random<Scalar>());
|
||||
}
|
||||
}
|
||||
@ -79,67 +110,55 @@ int main(int argc, char *argv[])
|
||||
// dense matrices
|
||||
#ifdef DENSEMATRIX
|
||||
{
|
||||
timer.reset();
|
||||
timer.start();
|
||||
for (int k=0; k<REPEAT; ++k)
|
||||
setrand_eigen_dense(coords,values);
|
||||
timer.stop();
|
||||
BENCH(setrand_eigen_dense(coords,values);)
|
||||
std::cout << "Eigen Dense\t" << timer.value() << "\n";
|
||||
}
|
||||
#endif
|
||||
|
||||
// eigen sparse matrices
|
||||
if (!fullyrand)
|
||||
// if (!fullyrand)
|
||||
// {
|
||||
// BENCH(setinnerrand_eigen(coords,values);)
|
||||
// std::cout << "Eigen fillrand\t" << timer.value() << "\n";
|
||||
// }
|
||||
{
|
||||
timer.reset();
|
||||
timer.start();
|
||||
for (int k=0; k<REPEAT; ++k)
|
||||
setinnerrand_eigen(coords,values);
|
||||
timer.stop();
|
||||
std::cout << "Eigen fillrand\t" << timer.value() << "\n";
|
||||
BENCH(setrand_eigen_dynamic(coords,values);)
|
||||
std::cout << "Eigen dynamic\t" << timer.value() << "\n";
|
||||
}
|
||||
// {
|
||||
// BENCH(setrand_eigen_compact(coords,values);)
|
||||
// std::cout << "Eigen compact\t" << timer.value() << "\n";
|
||||
// }
|
||||
{
|
||||
BENCH(setrand_eigen_sumeq(coords,values);)
|
||||
std::cout << "Eigen sumeq\t" << timer.value() << "\n";
|
||||
}
|
||||
{
|
||||
timer.reset();
|
||||
timer.start();
|
||||
for (int k=0; k<REPEAT; ++k)
|
||||
setrand_eigen_gnu_hash(coords,values);
|
||||
timer.stop();
|
||||
std::cout << "Eigen std::map\t" << timer.value() << "\n";
|
||||
// BENCH(setrand_eigen_gnu_hash(coords,values);)
|
||||
// std::cout << "Eigen std::map\t" << timer.value() << "\n";
|
||||
}
|
||||
{
|
||||
BENCH(setrand_scipy(coords,values);)
|
||||
std::cout << "scipy\t" << timer.value() << "\n";
|
||||
}
|
||||
#ifndef NOGOOGLE
|
||||
{
|
||||
timer.reset();
|
||||
timer.start();
|
||||
for (int k=0; k<REPEAT; ++k)
|
||||
setrand_eigen_google_dense(coords,values);
|
||||
timer.stop();
|
||||
BENCH(setrand_eigen_google_dense(coords,values);)
|
||||
std::cout << "Eigen google dense\t" << timer.value() << "\n";
|
||||
}
|
||||
{
|
||||
timer.reset();
|
||||
timer.start();
|
||||
for (int k=0; k<REPEAT; ++k)
|
||||
setrand_eigen_google_sparse(coords,values);
|
||||
timer.stop();
|
||||
BENCH(setrand_eigen_google_sparse(coords,values);)
|
||||
std::cout << "Eigen google sparse\t" << timer.value() << "\n";
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#ifndef NOUBLAS
|
||||
{
|
||||
timer.reset();
|
||||
timer.start();
|
||||
for (int k=0; k<REPEAT; ++k)
|
||||
setrand_ublas_mapped(coords,values);
|
||||
timer.stop();
|
||||
std::cout << "ublas mapped\t" << timer.value() << "\n";
|
||||
// BENCH(setrand_ublas_mapped(coords,values);)
|
||||
// std::cout << "ublas mapped\t" << timer.value() << "\n";
|
||||
}
|
||||
{
|
||||
timer.reset();
|
||||
timer.start();
|
||||
for (int k=0; k<REPEAT; ++k)
|
||||
setrand_ublas_genvec(coords,values);
|
||||
timer.stop();
|
||||
BENCH(setrand_ublas_genvec(coords,values);)
|
||||
std::cout << "ublas vecofvec\t" << timer.value() << "\n";
|
||||
}
|
||||
/*{
|
||||
@ -159,16 +178,12 @@ int main(int argc, char *argv[])
|
||||
std::cout << "ublas coord\t" << timer.value() << "\n";
|
||||
}*/
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
// MTL4
|
||||
#ifndef NOMTL
|
||||
{
|
||||
timer.reset();
|
||||
timer.start();
|
||||
for (int k=0; k<REPEAT; ++k)
|
||||
setrand_mtl(coords,values);
|
||||
timer.stop();
|
||||
BENCH(setrand_mtl(coords,values));
|
||||
std::cout << "MTL\t" << timer.value() << "\n";
|
||||
}
|
||||
#endif
|
||||
@ -180,16 +195,63 @@ EIGEN_DONT_INLINE Scalar* setinnerrand_eigen(const Coordinates& coords, const Va
|
||||
{
|
||||
using namespace Eigen;
|
||||
SparseMatrix<Scalar> mat(SIZE,SIZE);
|
||||
mat.startFill(2000000/*coords.size()*/);
|
||||
//mat.startFill(2000000/*coords.size()*/);
|
||||
for (int i=0; i<coords.size(); ++i)
|
||||
{
|
||||
mat.fillrand(coords[i].x(), coords[i].y()) = vals[i];
|
||||
mat.insert(coords[i].x(), coords[i].y()) = vals[i];
|
||||
}
|
||||
mat.endFill();
|
||||
mat.finalize();
|
||||
CHECK_MEM;
|
||||
return 0;
|
||||
}
|
||||
|
||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_dynamic(const Coordinates& coords, const Values& vals)
|
||||
{
|
||||
using namespace Eigen;
|
||||
DynamicSparseMatrix<Scalar> mat(SIZE,SIZE);
|
||||
mat.reserve(coords.size()/10);
|
||||
for (int i=0; i<coords.size(); ++i)
|
||||
{
|
||||
mat.coeffRef(coords[i].x(), coords[i].y()) += vals[i];
|
||||
}
|
||||
mat.finalize();
|
||||
CHECK_MEM;
|
||||
return &mat.coeffRef(coords[0].x(), coords[0].y());
|
||||
}
|
||||
|
||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_sumeq(const Coordinates& coords, const Values& vals)
|
||||
{
|
||||
using namespace Eigen;
|
||||
int n = coords.size()/KK;
|
||||
DynamicSparseMatrix<Scalar> mat(SIZE,SIZE);
|
||||
for (int j=0; j<KK; ++j)
|
||||
{
|
||||
DynamicSparseMatrix<Scalar> aux(SIZE,SIZE);
|
||||
mat.reserve(n);
|
||||
for (int i=j*n; i<(j+1)*n; ++i)
|
||||
{
|
||||
aux.insert(coords[i].x(), coords[i].y()) += vals[i];
|
||||
}
|
||||
aux.finalize();
|
||||
mat += aux;
|
||||
}
|
||||
return &mat.coeffRef(coords[0].x(), coords[0].y());
|
||||
}
|
||||
|
||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_compact(const Coordinates& coords, const Values& vals)
|
||||
{
|
||||
using namespace Eigen;
|
||||
DynamicSparseMatrix<Scalar> setter(SIZE,SIZE);
|
||||
setter.reserve(coords.size()/10);
|
||||
for (int i=0; i<coords.size(); ++i)
|
||||
{
|
||||
setter.coeffRef(coords[i].x(), coords[i].y()) += vals[i];
|
||||
}
|
||||
SparseMatrix<Scalar> mat = setter;
|
||||
CHECK_MEM;
|
||||
return &mat.coeffRef(coords[0].x(), coords[0].y());
|
||||
}
|
||||
|
||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, const Values& vals)
|
||||
{
|
||||
using namespace Eigen;
|
||||
@ -198,11 +260,11 @@ EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, cons
|
||||
RandomSetter<SparseMatrix<Scalar>, StdMapTraits > setter(mat);
|
||||
for (int i=0; i<coords.size(); ++i)
|
||||
{
|
||||
setter(coords[i].x(), coords[i].y()) = vals[i];
|
||||
setter(coords[i].x(), coords[i].y()) += vals[i];
|
||||
}
|
||||
CHECK_MEM;
|
||||
}
|
||||
return 0;//&mat.coeffRef(coords[0].x(), coords[0].y());
|
||||
return &mat.coeffRef(coords[0].x(), coords[0].y());
|
||||
}
|
||||
|
||||
#ifndef NOGOOGLE
|
||||
@ -213,10 +275,10 @@ EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords,
|
||||
{
|
||||
RandomSetter<SparseMatrix<Scalar>, GoogleDenseHashMapTraits> setter(mat);
|
||||
for (int i=0; i<coords.size(); ++i)
|
||||
setter(coords[i].x(), coords[i].y()) = vals[i];
|
||||
setter(coords[i].x(), coords[i].y()) += vals[i];
|
||||
CHECK_MEM;
|
||||
}
|
||||
return 0;//&mat.coeffRef(coords[0].x(), coords[0].y());
|
||||
return &mat.coeffRef(coords[0].x(), coords[0].y());
|
||||
}
|
||||
|
||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords, const Values& vals)
|
||||
@ -226,13 +288,139 @@ EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords,
|
||||
{
|
||||
RandomSetter<SparseMatrix<Scalar>, GoogleSparseHashMapTraits> setter(mat);
|
||||
for (int i=0; i<coords.size(); ++i)
|
||||
setter(coords[i].x(), coords[i].y()) = vals[i];
|
||||
setter(coords[i].x(), coords[i].y()) += vals[i];
|
||||
CHECK_MEM;
|
||||
}
|
||||
return 0;//&mat.coeffRef(coords[0].x(), coords[0].y());
|
||||
return &mat.coeffRef(coords[0].x(), coords[0].y());
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
template <class T>
|
||||
void coo_tocsr(const int n_row,
|
||||
const int n_col,
|
||||
const int nnz,
|
||||
const Coordinates Aij,
|
||||
const Values Ax,
|
||||
int Bp[],
|
||||
int Bj[],
|
||||
T Bx[])
|
||||
{
|
||||
//compute number of non-zero entries per row of A coo_tocsr
|
||||
std::fill(Bp, Bp + n_row, 0);
|
||||
|
||||
for (int n = 0; n < nnz; n++){
|
||||
Bp[Aij[n].x()]++;
|
||||
}
|
||||
|
||||
//cumsum the nnz per row to get Bp[]
|
||||
for(int i = 0, cumsum = 0; i < n_row; i++){
|
||||
int temp = Bp[i];
|
||||
Bp[i] = cumsum;
|
||||
cumsum += temp;
|
||||
}
|
||||
Bp[n_row] = nnz;
|
||||
|
||||
//write Aj,Ax into Bj,Bx
|
||||
for(int n = 0; n < nnz; n++){
|
||||
int row = Aij[n].x();
|
||||
int dest = Bp[row];
|
||||
|
||||
Bj[dest] = Aij[n].y();
|
||||
Bx[dest] = Ax[n];
|
||||
|
||||
Bp[row]++;
|
||||
}
|
||||
|
||||
for(int i = 0, last = 0; i <= n_row; i++){
|
||||
int temp = Bp[i];
|
||||
Bp[i] = last;
|
||||
last = temp;
|
||||
}
|
||||
|
||||
//now Bp,Bj,Bx form a CSR representation (with possible duplicates)
|
||||
}
|
||||
|
||||
template< class T1, class T2 >
|
||||
bool kv_pair_less(const std::pair<T1,T2>& x, const std::pair<T1,T2>& y){
|
||||
return x.first < y.first;
|
||||
}
|
||||
|
||||
|
||||
template<class I, class T>
|
||||
void csr_sort_indices(const I n_row,
|
||||
const I Ap[],
|
||||
I Aj[],
|
||||
T Ax[])
|
||||
{
|
||||
std::vector< std::pair<I,T> > temp;
|
||||
|
||||
for(I i = 0; i < n_row; i++){
|
||||
I row_start = Ap[i];
|
||||
I row_end = Ap[i+1];
|
||||
|
||||
temp.clear();
|
||||
|
||||
for(I jj = row_start; jj < row_end; jj++){
|
||||
temp.push_back(std::make_pair(Aj[jj],Ax[jj]));
|
||||
}
|
||||
|
||||
std::sort(temp.begin(),temp.end(),kv_pair_less<I,T>);
|
||||
|
||||
for(I jj = row_start, n = 0; jj < row_end; jj++, n++){
|
||||
Aj[jj] = temp[n].first;
|
||||
Ax[jj] = temp[n].second;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <class I, class T>
|
||||
void csr_sum_duplicates(const I n_row,
|
||||
const I n_col,
|
||||
I Ap[],
|
||||
I Aj[],
|
||||
T Ax[])
|
||||
{
|
||||
I nnz = 0;
|
||||
I row_end = 0;
|
||||
for(I i = 0; i < n_row; i++){
|
||||
I jj = row_end;
|
||||
row_end = Ap[i+1];
|
||||
while( jj < row_end ){
|
||||
I j = Aj[jj];
|
||||
T x = Ax[jj];
|
||||
jj++;
|
||||
while( jj < row_end && Aj[jj] == j ){
|
||||
x += Ax[jj];
|
||||
jj++;
|
||||
}
|
||||
Aj[nnz] = j;
|
||||
Ax[nnz] = x;
|
||||
nnz++;
|
||||
}
|
||||
Ap[i+1] = nnz;
|
||||
}
|
||||
}
|
||||
|
||||
EIGEN_DONT_INLINE Scalar* setrand_scipy(const Coordinates& coords, const Values& vals)
|
||||
{
|
||||
using namespace Eigen;
|
||||
SparseMatrix<Scalar> mat(SIZE,SIZE);
|
||||
mat.resizeNonZeros(coords.size());
|
||||
// std::cerr << "setrand_scipy...\n";
|
||||
coo_tocsr<Scalar>(SIZE,SIZE, coords.size(), coords, vals, mat._outerIndexPtr(), mat._innerIndexPtr(), mat._valuePtr());
|
||||
// std::cerr << "coo_tocsr ok\n";
|
||||
|
||||
csr_sort_indices(SIZE, mat._outerIndexPtr(), mat._innerIndexPtr(), mat._valuePtr());
|
||||
|
||||
csr_sum_duplicates(SIZE, SIZE, mat._outerIndexPtr(), mat._innerIndexPtr(), mat._valuePtr());
|
||||
|
||||
mat.resizeNonZeros(mat._outerIndexPtr()[SIZE]);
|
||||
|
||||
return &mat.coeffRef(coords[0].x(), coords[0].y());
|
||||
}
|
||||
|
||||
|
||||
#ifndef NOUBLAS
|
||||
EIGEN_DONT_INLINE Scalar* setrand_ublas_mapped(const Coordinates& coords, const Values& vals)
|
||||
{
|
||||
@ -242,7 +430,7 @@ EIGEN_DONT_INLINE Scalar* setrand_ublas_mapped(const Coordinates& coords, const
|
||||
mapped_matrix<Scalar> aux(SIZE,SIZE);
|
||||
for (int i=0; i<coords.size(); ++i)
|
||||
{
|
||||
aux(coords[i].x(), coords[i].y()) = vals[i];
|
||||
aux(coords[i].x(), coords[i].y()) += vals[i];
|
||||
}
|
||||
CHECK_MEM;
|
||||
compressed_matrix<Scalar> mat(aux);
|
||||
@ -278,12 +466,12 @@ EIGEN_DONT_INLINE Scalar* setrand_ublas_genvec(const Coordinates& coords, const
|
||||
using namespace boost;
|
||||
using namespace boost::numeric;
|
||||
using namespace boost::numeric::ublas;
|
||||
|
||||
|
||||
// ublas::vector<coordinate_vector<Scalar> > foo;
|
||||
generalized_vector_of_vector<Scalar, row_major, ublas::vector<coordinate_vector<Scalar> > > aux(SIZE,SIZE);
|
||||
for (int i=0; i<coords.size(); ++i)
|
||||
{
|
||||
aux(coords[i].x(), coords[i].y()) = vals[i];
|
||||
aux(coords[i].x(), coords[i].y()) += vals[i];
|
||||
}
|
||||
CHECK_MEM;
|
||||
compressed_matrix<Scalar,row_major> mat(aux);
|
||||
|
Loading…
x
Reference in New Issue
Block a user