mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-11-27 06:30:28 +08:00
Use HessenbergDecomposition in EigenSolver.
This commit is contained in:
parent
1b3f7f2fee
commit
8cfa672fe0
@ -25,6 +25,8 @@
|
||||
#ifndef EIGEN_EIGENSOLVER_H
|
||||
#define EIGEN_EIGENSOLVER_H
|
||||
|
||||
#include "./HessenbergDecomposition.h"
|
||||
|
||||
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
||||
* \nonstableyet
|
||||
*
|
||||
@ -310,13 +312,11 @@ EigenSolver<MatrixType>& EigenSolver<MatrixType>::compute(const MatrixType& matr
|
||||
assert(matrix.cols() == matrix.rows());
|
||||
int n = matrix.cols();
|
||||
m_eivalues.resize(n,1);
|
||||
m_eivec.resize(n,n);
|
||||
|
||||
MatrixType matH = matrix;
|
||||
RealVectorType ort(n);
|
||||
|
||||
// Reduce to Hessenberg form.
|
||||
orthes(matH, ort);
|
||||
HessenbergDecomposition<MatrixType> hd(matrix);
|
||||
MatrixType matH = hd.matrixH();
|
||||
m_eivec = hd.matrixQ();
|
||||
|
||||
// Reduce Hessenberg to real Schur form.
|
||||
hqr2(matH);
|
||||
@ -325,69 +325,6 @@ EigenSolver<MatrixType>& EigenSolver<MatrixType>::compute(const MatrixType& matr
|
||||
return *this;
|
||||
}
|
||||
|
||||
// Nonsymmetric reduction to Hessenberg form.
|
||||
template<typename MatrixType>
|
||||
void EigenSolver<MatrixType>::orthes(MatrixType& matH, RealVectorType& ort)
|
||||
{
|
||||
// This is derived from the Algol procedures orthes and ortran,
|
||||
// by Martin and Wilkinson, Handbook for Auto. Comp.,
|
||||
// Vol.ii-Linear Algebra, and the corresponding
|
||||
// Fortran subroutines in EISPACK.
|
||||
|
||||
int n = m_eivec.cols();
|
||||
int low = 0;
|
||||
int high = n-1;
|
||||
|
||||
for (int m = low+1; m <= high-1; ++m)
|
||||
{
|
||||
// Scale column.
|
||||
RealScalar scale = matH.block(m, m-1, high-m+1, 1).cwiseAbs().sum();
|
||||
if (scale != 0.0)
|
||||
{
|
||||
// Compute Householder transformation.
|
||||
RealScalar h = 0.0;
|
||||
// FIXME could be rewritten, but this one looks better wrt cache
|
||||
for (int i = high; i >= m; i--)
|
||||
{
|
||||
ort.coeffRef(i) = matH.coeff(i,m-1)/scale;
|
||||
h += ort.coeff(i) * ort.coeff(i);
|
||||
}
|
||||
RealScalar g = ei_sqrt(h);
|
||||
if (ort.coeff(m) > 0)
|
||||
g = -g;
|
||||
h = h - ort.coeff(m) * g;
|
||||
ort.coeffRef(m) = ort.coeff(m) - g;
|
||||
|
||||
// Apply Householder similarity transformation
|
||||
// H = (I-u*u'/h)*H*(I-u*u')/h)
|
||||
int bSize = high-m+1;
|
||||
matH.block(m, m, bSize, n-m).noalias() -= ((ort.segment(m, bSize)/h)
|
||||
* (ort.segment(m, bSize).transpose() * matH.block(m, m, bSize, n-m)));
|
||||
|
||||
matH.block(0, m, high+1, bSize).noalias() -= ((matH.block(0, m, high+1, bSize) * ort.segment(m, bSize))
|
||||
* (ort.segment(m, bSize)/h).transpose());
|
||||
|
||||
ort.coeffRef(m) = scale*ort.coeff(m);
|
||||
matH.coeffRef(m,m-1) = scale*g;
|
||||
}
|
||||
}
|
||||
|
||||
// Accumulate transformations (Algol's ortran).
|
||||
m_eivec.setIdentity();
|
||||
|
||||
for (int m = high-1; m >= low+1; m--)
|
||||
{
|
||||
if (matH.coeff(m,m-1) != 0.0)
|
||||
{
|
||||
ort.segment(m+1, high-m) = matH.col(m-1).segment(m+1, high-m);
|
||||
|
||||
int bSize = high-m+1;
|
||||
m_eivec.block(m, m, bSize, bSize).noalias() += ( (ort.segment(m, bSize) / (matH.coeff(m,m-1) * ort.coeff(m)))
|
||||
* (ort.segment(m, bSize).transpose() * m_eivec.block(m, m, bSize, bSize)) );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Complex scalar division.
|
||||
template<typename Scalar>
|
||||
std::complex<Scalar> cdiv(Scalar xr, Scalar xi, Scalar yr, Scalar yi)
|
||||
|
Loading…
Reference in New Issue
Block a user