Merged in kylemacfarlan/eigen (pull request PR-337)

Add support for SuiteSparse's KLU routines
This commit is contained in:
Gael Guennebaud 2017-11-10 10:43:17 +00:00
commit 8cf63ccb99
5 changed files with 504 additions and 0 deletions

51
cmake/FindKLU.cmake Normal file
View File

@ -0,0 +1,51 @@
# KLU lib usually requires linking to a blas library.
# It is up to the user of this module to find a BLAS and link to it.
if (KLU_INCLUDES AND KLU_LIBRARIES)
set(KLU_FIND_QUIETLY TRUE)
endif (KLU_INCLUDES AND KLU_LIBRARIES)
find_path(KLU_INCLUDES
NAMES
klu.h
PATHS
$ENV{KLUDIR}
${INCLUDE_INSTALL_DIR}
PATH_SUFFIXES
suitesparse
ufsparse
)
if(KLU_LIBRARIES)
if(NOT KLU_LIBDIR)
get_filename_component(KLU_LIBDIR ${KLU_LIBRARIES} PATH)
endif(NOT KLU_LIBDIR)
find_library(COLAMD_LIBRARY colamd PATHS ${KLU_LIBDIR} $ENV{KLUDIR} ${LIB_INSTALL_DIR})
if(COLAMD_LIBRARY)
set(KLU_LIBRARIES ${KLU_LIBRARIES} ${COLAMD_LIBRARY})
endif ()
find_library(AMD_LIBRARY amd PATHS ${KLU_LIBDIR} $ENV{KLUDIR} ${LIB_INSTALL_DIR})
if(AMD_LIBRARY)
set(KLU_LIBRARIES ${KLU_LIBRARIES} ${AMD_LIBRARY})
endif ()
find_library(SUITESPARSE_LIBRARY SuiteSparse PATHS ${KLU_LIBDIR} $ENV{KLUDIR} ${LIB_INSTALL_DIR})
if(SUITESPARSE_LIBRARY)
set(KLU_LIBRARIES ${KLU_LIBRARIES} ${SUITESPARSE_LIBRARY})
endif ()
find_library(CHOLMOD_LIBRARY cholmod PATHS $ENV{KLU_LIBDIR} $ENV{KLUDIR} ${LIB_INSTALL_DIR})
if(CHOLMOD_LIBRARY)
set(KLU_LIBRARIES ${KLU_LIBRARIES} ${CHOLMOD_LIBRARY})
endif()
endif(KLU_LIBRARIES)
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(KLU DEFAULT_MSG
KLU_INCLUDES KLU_LIBRARIES)
mark_as_advanced(KLU_INCLUDES KLU_LIBRARIES AMD_LIBRARY COLAMD_LIBRARY CHOLMOD_LIBRARY SUITESPARSE_LIBRARY)

View File

@ -68,6 +68,17 @@ else()
ei_add_property(EIGEN_MISSING_BACKENDS "UmfPack, ") ei_add_property(EIGEN_MISSING_BACKENDS "UmfPack, ")
endif() endif()
find_package(KLU)
if(KLU_FOUND)
add_definitions("-DEIGEN_KLU_SUPPORT")
include_directories(${KLU_INCLUDES})
set(SPARSE_LIBS ${SPARSE_LIBS} ${KLU_LIBRARIES} ${EIGEN_BLAS_LIBRARIES})
set(KLU_ALL_LIBS ${KLU_LIBRARIES} ${EIGEN_BLAS_LIBRARIES})
ei_add_property(EIGEN_TESTED_BACKENDS "KLU, ")
else()
ei_add_property(EIGEN_MISSING_BACKENDS "KLU, ")
endif()
find_package(SuperLU 4.0) find_package(SuperLU 4.0)
if(SUPERLU_FOUND) if(SUPERLU_FOUND)
add_definitions("-DEIGEN_SUPERLU_SUPPORT") add_definitions("-DEIGEN_SUPERLU_SUPPORT")
@ -297,6 +308,11 @@ if(UMFPACK_FOUND)
ei_add_test(umfpack_support "" "${UMFPACK_ALL_LIBS}") ei_add_test(umfpack_support "" "${UMFPACK_ALL_LIBS}")
endif() endif()
if(KLU_FOUND OR SuiteSparse_FOUND)
message("ADDING KLU TEST")
ei_add_test(klu_support "" "${KLU_ALL_LIBS}")
endif()
if(SUPERLU_FOUND) if(SUPERLU_FOUND)
ei_add_test(superlu_support "" "${SUPERLU_ALL_LIBS}") ei_add_test(superlu_support "" "${SUPERLU_ALL_LIBS}")
endif() endif()

32
test/klu_support.cpp Normal file
View File

@ -0,0 +1,32 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Gael Guennebaud <g.gael@free.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_NO_DEBUG_SMALL_PRODUCT_BLOCKS
#include "sparse_solver.h"
#include <unsupported/Eigen/KLUSupport>
template<typename T> void test_klu_support_T()
{
KLU<SparseMatrix<T, ColMajor> > klu_colmajor;
KLU<SparseMatrix<T, RowMajor> > klu_rowmajor;
check_sparse_square_solving(klu_colmajor);
check_sparse_square_solving(klu_rowmajor);
//check_sparse_square_determinant(umfpack_colmajor);
//check_sparse_square_determinant(umfpack_rowmajor);
}
void test_klu_support()
{
CALL_SUBTEST_1(test_klu_support_T<double>());
CALL_SUBTEST_2(test_klu_support_T<std::complex<double> >());
}

View File

@ -0,0 +1,41 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_KLUSUPPORT_MODULE_H
#define EIGEN_KLUSUPPORT_MODULE_H
#include <Eigen/SparseCore>
#include <Eigen/src/Core/util/DisableStupidWarnings.h>
extern "C" {
#include <btf.h>
#include <klu.h>
}
/** \ingroup Support_modules
* \defgroup KLUSupport_Module KLUSupport module
*
* This module provides an interface to the KLU library which is part of the <a href="http://www.suitesparse.com">suitesparse</a> package.
* It provides the following factorization class:
* - class KLU: a sparse LU factorization, well-suited for circuit simulation.
*
* \code
* #include <Eigen/KLUSupport>
* \endcode
*
* In order to use this module, the klu and btf headers must be accessible from the include paths, and your binary must be linked to the klu library and its dependencies.
* The dependencies depend on how umfpack has been compiled.
* For a cmake based project, you can use our FindKLU.cmake module to help you in this task.
*
*/
#include "src/KLUSupport/KLUSupport.h"
#include <Eigen/src/Core/util/ReenableStupidWarnings.h>
#endif // EIGEN_KLUSUPPORT_MODULE_H

View File

@ -0,0 +1,364 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2017 Kyle Macfarlan <kyle.macfarlan@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_KLUSUPPORT_H
#define EIGEN_KLUSUPPORT_H
namespace Eigen {
/* TODO extract L, extract U, compute det, etc... */
/** \ingroup KLUSupport_Module
* \brief A sparse LU factorization and solver based on KLU
*
* This class allows to solve for A.X = B sparse linear problems via a LU factorization
* using the KLU library. The sparse matrix A must be squared and full rank.
* The vectors or matrices X and B can be either dense or sparse.
*
* \warning The input matrix A should be in a \b compressed and \b column-major form.
* Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
*
* \implsparsesolverconcept
*
* \sa \ref TutorialSparseSolverConcept, class SparseLU
*/
inline int klu_solve(klu_symbolic *Symbolic, klu_numeric *Numeric, int ldim, int nrhs, double B [ ], klu_common *Common, double) {
return klu_solve(Symbolic, Numeric, ldim, nrhs, B, Common);
}
inline int klu_solve(klu_symbolic *Symbolic, klu_numeric *Numeric, int ldim, int nrhs, std::complex<double>B[], klu_common *Common, std::complex<double>) {
return klu_z_solve(Symbolic, Numeric, ldim, nrhs, &numext::real_ref(B[0]), Common);
}
inline int klu_tsolve(klu_symbolic *Symbolic, klu_numeric *Numeric, int ldim, int nrhs, double B[], klu_common *Common, double) {
return klu_tsolve(Symbolic, Numeric, ldim, nrhs, B, Common);
}
inline int klu_tsolve(klu_symbolic *Symbolic, klu_numeric *Numeric, int ldim, int nrhs, std::complex<double>B[], klu_common *Common, std::complex<double>) {
return klu_z_tsolve(Symbolic, Numeric, ldim, nrhs, &numext::real_ref(B[0]), 0, Common);
}
inline klu_numeric* klu_factor(int Ap [ ], int Ai [ ], double Ax [ ], klu_symbolic *Symbolic, klu_common *Common, double) {
return klu_factor(Ap, Ai, Ax, Symbolic, Common);
}
inline klu_numeric* klu_factor(int Ap[], int Ai[], std::complex<double> Ax[], klu_symbolic *Symbolic, klu_common *Common, std::complex<double>) {
return klu_z_factor(Ap, Ai, &numext::real_ref(Ax[0]), Symbolic, Common);
}
template<typename _MatrixType>
class KLU : public SparseSolverBase<KLU<_MatrixType> >
{
protected:
typedef SparseSolverBase<KLU<_MatrixType> > Base;
using Base::m_isInitialized;
public:
using Base::_solve_impl;
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::StorageIndex StorageIndex;
typedef Matrix<Scalar,Dynamic,1> Vector;
typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
typedef SparseMatrix<Scalar> LUMatrixType;
typedef SparseMatrix<Scalar,ColMajor,int> KLUMatrixType;
typedef Ref<const KLUMatrixType, StandardCompressedFormat> KLUMatrixRef;
enum {
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
public:
KLU()
: m_dummy(0,0), mp_matrix(m_dummy)
{
init();
}
template<typename InputMatrixType>
explicit KLU(const InputMatrixType& matrix)
: mp_matrix(matrix)
{
init();
compute(matrix);
}
~KLU()
{
if(m_symbolic) klu_free_symbolic(&m_symbolic,&m_common);
if(m_numeric) klu_free_numeric(&m_numeric,&m_common);
}
inline Index rows() const { return mp_matrix.rows(); }
inline Index cols() const { return mp_matrix.cols(); }
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the matrix.appears to be negative.
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return m_info;
}
inline const LUMatrixType& matrixL() const
{
if (m_extractedDataAreDirty) extractData();
return m_l;
}
inline const LUMatrixType& matrixU() const
{
if (m_extractedDataAreDirty) extractData();
return m_u;
}
inline const IntColVectorType& permutationP() const
{
if (m_extractedDataAreDirty) extractData();
return m_p;
}
inline const IntRowVectorType& permutationQ() const
{
if (m_extractedDataAreDirty) extractData();
return m_q;
}
/** Computes the sparse Cholesky decomposition of \a matrix
* Note that the matrix should be column-major, and in compressed format for best performance.
* \sa SparseMatrix::makeCompressed().
*/
template<typename InputMatrixType>
void compute(const InputMatrixType& matrix)
{
if(m_symbolic) klu_free_symbolic(&m_symbolic, &m_common);
if(m_numeric) klu_free_numeric(&m_numeric, &m_common);
grab(matrix.derived());
analyzePattern_impl();
factorize_impl();
}
/** Performs a symbolic decomposition on the sparcity of \a matrix.
*
* This function is particularly useful when solving for several problems having the same structure.
*
* \sa factorize(), compute()
*/
template<typename InputMatrixType>
void analyzePattern(const InputMatrixType& matrix)
{
if(m_symbolic) klu_free_symbolic(&m_symbolic, &m_common);
if(m_numeric) klu_free_numeric(&m_numeric, &m_common);
grab(matrix.derived());
analyzePattern_impl();
}
/** Provides access to the control settings array used by KLU.
*
* See KLU documentation for details.
*/
inline const klu_common& kluCommon() const
{
return m_common;
}
/** Provides access to the control settings array used by UmfPack.
*
* If this array contains NaN's, the default values are used.
*
* See KLU documentation for details.
*/
inline klu_common& kluCommon()
{
return m_common;
}
/** Performs a numeric decomposition of \a matrix
*
* The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed.
*
* \sa analyzePattern(), compute()
*/
template<typename InputMatrixType>
void factorize(const InputMatrixType& matrix)
{
eigen_assert(m_analysisIsOk && "KLU: you must first call analyzePattern()");
if(m_numeric)
klu_free_numeric(&m_numeric,&m_common);
grab(matrix.derived());
factorize_impl();
}
/** \internal */
template<typename BDerived,typename XDerived>
bool _solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const;
Scalar determinant() const;
void extractData() const;
protected:
void init()
{
m_info = InvalidInput;
m_isInitialized = false;
m_numeric = 0;
m_symbolic = 0;
m_extractedDataAreDirty = true;
klu_defaults(&m_common);
}
void analyzePattern_impl()
{
m_info = InvalidInput;
m_analysisIsOk = false;
m_factorizationIsOk = false;
m_symbolic = klu_analyze(internal::convert_index<int>(mp_matrix.rows()),
const_cast<StorageIndex*>(mp_matrix.outerIndexPtr()), const_cast<StorageIndex*>(mp_matrix.innerIndexPtr()),
&m_common);
if (m_symbolic) {
m_isInitialized = true;
m_info = Success;
m_analysisIsOk = true;
m_extractedDataAreDirty = true;
}
}
void factorize_impl()
{
m_numeric = klu_factor(const_cast<StorageIndex*>(mp_matrix.outerIndexPtr()), const_cast<StorageIndex*>(mp_matrix.innerIndexPtr()), const_cast<Scalar*>(mp_matrix.valuePtr()),
m_symbolic, &m_common, Scalar());
m_info = m_numeric ? Success : NumericalIssue;
m_factorizationIsOk = m_numeric ? 1 : 0;
m_extractedDataAreDirty = true;
}
template<typename MatrixDerived>
void grab(const EigenBase<MatrixDerived> &A)
{
mp_matrix.~KLUMatrixRef();
::new (&mp_matrix) KLUMatrixRef(A.derived());
}
void grab(const KLUMatrixRef &A)
{
if(&(A.derived()) != &mp_matrix)
{
mp_matrix.~KLUMatrixRef();
::new (&mp_matrix) KLUMatrixRef(A);
}
}
// cached data to reduce reallocation, etc.
mutable LUMatrixType m_l;
mutable LUMatrixType m_u;
mutable IntColVectorType m_p;
mutable IntRowVectorType m_q;
KLUMatrixType m_dummy;
KLUMatrixRef mp_matrix;
klu_numeric* m_numeric;
klu_symbolic* m_symbolic;
klu_common m_common;
mutable ComputationInfo m_info;
int m_factorizationIsOk;
int m_analysisIsOk;
mutable bool m_extractedDataAreDirty;
private:
KLU(const KLU& ) { }
};
template<typename MatrixType>
void KLU<MatrixType>::extractData() const
{
if (m_extractedDataAreDirty)
{
eigen_assert(false && "KLU: extractData Not Yet Implemented");
// // get size of the data
// int lnz, unz, rows, cols, nz_udiag;
// umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar());
//
// // allocate data
// m_l.resize(rows,(std::min)(rows,cols));
// m_l.resizeNonZeros(lnz);
//
// m_u.resize((std::min)(rows,cols),cols);
// m_u.resizeNonZeros(unz);
//
// m_p.resize(rows);
// m_q.resize(cols);
//
// // extract
// umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(),
// m_u.outerIndexPtr(), m_u.innerIndexPtr(), m_u.valuePtr(),
// m_p.data(), m_q.data(), 0, 0, 0, m_numeric);
//
// m_extractedDataAreDirty = false;
}
}
template<typename MatrixType>
typename KLU<MatrixType>::Scalar KLU<MatrixType>::determinant() const
{
eigen_assert(false && "KLU: extractData Not Yet Implemented");
return Scalar();
}
template<typename MatrixType>
template<typename BDerived,typename XDerived>
bool KLU<MatrixType>::_solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const
{
Index rhsCols = b.cols();
eigen_assert((BDerived::Flags&RowMajorBit)==0 && "KLU backend does not support non col-major rhs yet");
eigen_assert((XDerived::Flags&RowMajorBit)==0 && "KLU backend does not support non col-major result yet");
eigen_assert(b.derived().data() != x.derived().data() && " KLU does not support inplace solve");
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or analyzePattern()/factorize()");
x = b;
int info = 0;
if (true/*(MatrixType::Flags&RowMajorBit) == 0*/)
{
info = klu_solve(m_symbolic, m_numeric, b.rows(), rhsCols, x.const_cast_derived().data(), const_cast<klu_common*>(&m_common), Scalar());
}
else
{
info = klu_tsolve(m_symbolic, m_numeric, b.rows(), rhsCols, x.const_cast_derived().data(), const_cast<klu_common*>(&m_common), Scalar());
}
m_info = info!=0 ? Success : NumericalIssue;
return true;
}
} // end namespace Eigen
#endif // EIGEN_KLUSUPPORT_H