* revise the meta_least_common_multiple function template, add a bool variable to check whether the A is larger than B.

* This can make less compile_time if A is smaller than B. and avoid failure in compile if we get a little A and a great B.

Authored by @awoniu.
This commit is contained in:
Rasmus Munk Larsen 2021-08-11 18:10:01 +00:00
parent f1b899eef7
commit 8ce341caf2

View File

@ -715,20 +715,25 @@ class meta_sqrt<Y, InfX, SupX, true> { public: enum { ret = (SupX*SupX <= Y) ?
/** \internal Computes the least common multiple of two positive integer A and B /** \internal Computes the least common multiple of two positive integer A and B
* at compile-time. It implements a naive algorithm testing all multiples of A. * at compile-time.
* It thus works better if A>=B.
*/ */
template<int A, int B, int K=1, bool Done = ((A*K)%B)==0> template<int A, int B, int K=1, bool Done = ((A*K)%B)==0, bool Big=(A>=B)>
struct meta_least_common_multiple struct meta_least_common_multiple
{ {
enum { ret = meta_least_common_multiple<A,B,K+1>::ret }; enum { ret = meta_least_common_multiple<A,B,K+1>::ret };
}; };
template<int A, int B, int K, bool Done>
struct meta_least_common_multiple<A,B,K,Done,false>
{
enum { ret = meta_least_common_multiple<B,A,K>::ret };
};
template<int A, int B, int K> template<int A, int B, int K>
struct meta_least_common_multiple<A,B,K,true> struct meta_least_common_multiple<A,B,K,true,true>
{ {
enum { ret = A*K }; enum { ret = A*K };
}; };
/** \internal determines whether the product of two numeric types is allowed and what the return type is */ /** \internal determines whether the product of two numeric types is allowed and what the return type is */
template<typename T, typename U> struct scalar_product_traits template<typename T, typename U> struct scalar_product_traits
{ {