bug #1144: fix regression in x=y+A*x (aliasing), and move evaluator_traits::AssumeAliasing to evaluator_assume_aliasing.

This commit is contained in:
Gael Guennebaud 2016-01-09 08:30:38 +01:00
parent f9d71a1729
commit 8b9dc9f0df
11 changed files with 77 additions and 44 deletions

View File

@ -682,9 +682,9 @@ template< typename DstXprType, typename SrcXprType, typename Functor,
struct Assignment;
// The only purpose of this call_assignment() function is to deal with noalias() / AssumeAliasing and automatic transposition.
// Indeed, I (Gael) think that this concept of AssumeAliasing was a mistake, and it makes thing quite complicated.
// So this intermediate function removes everything related to AssumeAliasing such that Assignment
// The only purpose of this call_assignment() function is to deal with noalias() / "assume-aliasing" and automatic transposition.
// Indeed, I (Gael) think that this concept of "assume-aliasing" was a mistake, and it makes thing quite complicated.
// So this intermediate function removes everything related to "assume-aliasing" such that Assignment
// does not has to bother about these annoying details.
template<typename Dst, typename Src>
@ -698,21 +698,21 @@ EIGEN_DEVICE_FUNC void call_assignment(const Dst& dst, const Src& src)
call_assignment(dst, src, internal::assign_op<typename Dst::Scalar>());
}
// Deal with AssumeAliasing
// Deal with "assume-aliasing"
template<typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC void call_assignment(Dst& dst, const Src& src, const Func& func, typename enable_if<evaluator_traits<Src>::AssumeAliasing==1, void*>::type = 0)
EIGEN_DEVICE_FUNC void call_assignment(Dst& dst, const Src& src, const Func& func, typename enable_if< evaluator_assume_aliasing<Src>::value, void*>::type = 0)
{
typename plain_matrix_type<Src>::type tmp(src);
call_assignment_no_alias(dst, tmp, func);
}
template<typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC void call_assignment(Dst& dst, const Src& src, const Func& func, typename enable_if<evaluator_traits<Src>::AssumeAliasing==0, void*>::type = 0)
EIGEN_DEVICE_FUNC void call_assignment(Dst& dst, const Src& src, const Func& func, typename enable_if<!evaluator_assume_aliasing<Src>::value, void*>::type = 0)
{
call_assignment_no_alias(dst, src, func);
}
// by-pass AssumeAliasing
// by-pass "assume-aliasing"
// When there is no aliasing, we require that 'dst' has been properly resized
template<typename Dst, template <typename> class StorageBase, typename Src, typename Func>
EIGEN_DEVICE_FUNC void call_assignment(NoAlias<Dst,StorageBase>& dst, const Src& src, const Func& func)

View File

@ -63,10 +63,6 @@ struct evaluator_traits_base
// by default, get evaluator kind and shape from storage
typedef typename storage_kind_to_evaluator_kind<typename traits<T>::StorageKind>::Kind Kind;
typedef typename storage_kind_to_shape<typename traits<T>::StorageKind>::Shape Shape;
// 1 if assignment A = B assumes aliasing when B is of type T and thus B needs to be evaluated into a
// temporary; 0 if not.
static const int AssumeAliasing = 0;
};
// Default evaluator traits
@ -75,6 +71,10 @@ struct evaluator_traits : public evaluator_traits_base<T>
{
};
template<typename T, typename Shape = typename evaluator_traits<T>::Shape >
struct evaluator_assume_aliasing {
static const bool value = false;
};
// By default, we assume a unary expression:
template<typename T>

View File

@ -38,10 +38,9 @@ struct evaluator<Product<Lhs, Rhs, Options> >
// Catch scalar * ( A * B ) and transform it to (A*scalar) * B
// TODO we should apply that rule only if that's really helpful
template<typename Lhs, typename Rhs, typename Scalar>
struct evaluator_traits<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const Product<Lhs, Rhs, DefaultProduct> > >
: evaluator_traits_base<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const Product<Lhs, Rhs, DefaultProduct> > >
struct evaluator_assume_aliasing<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const Product<Lhs, Rhs, DefaultProduct> > >
{
enum { AssumeAliasing = 1 };
static const bool value = true;
};
template<typename Lhs, typename Rhs, typename Scalar>
struct evaluator<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const Product<Lhs, Rhs, DefaultProduct> > >
@ -81,17 +80,8 @@ template< typename Lhs, typename Rhs,
struct generic_product_impl;
template<typename Lhs, typename Rhs>
struct evaluator_traits<Product<Lhs, Rhs, DefaultProduct> >
: evaluator_traits_base<Product<Lhs, Rhs, DefaultProduct> >
{
enum { AssumeAliasing = 1 };
};
template<typename Lhs, typename Rhs>
struct evaluator_traits<Product<Lhs, Rhs, AliasFreeProduct> >
: evaluator_traits_base<Product<Lhs, Rhs, AliasFreeProduct> >
{
enum { AssumeAliasing = 0 };
struct evaluator_assume_aliasing<Product<Lhs, Rhs, DefaultProduct> > {
static const bool value = true;
};
// This is the default evaluator implementation for products:
@ -189,6 +179,13 @@ struct Assignment<DstXprType, CwiseUnaryOp<internal::scalar_multiple_op<ScalarBi
//----------------------------------------
// Catch "Dense ?= xpr + Product<>" expression to save one temporary
// FIXME we could probably enable these rules for any product, i.e., not only Dense and DefaultProduct
// TODO enable it for "Dense ?= xpr - Product<>" as well.
template<typename OtherXpr, typename Lhs, typename Rhs>
struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_sum_op<typename OtherXpr::Scalar>, const OtherXpr,
const Product<Lhs,Rhs,DefaultProduct> >, DenseShape > {
static const bool value = true;
};
template<typename DstXprType, typename OtherXpr, typename ProductType, typename Scalar, typename Func1, typename Func2>
struct assignment_from_xpr_plus_product

View File

@ -203,8 +203,6 @@ struct evaluator_traits<SelfAdjointView<MatrixType,Mode> >
{
typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind;
typedef SelfAdjointShape Shape;
static const int AssumeAliasing = 0;
};
template<int UpLo, int SetOpposite, typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor, int Version>

View File

@ -704,10 +704,6 @@ struct evaluator_traits<TriangularView<MatrixType,Mode> >
{
typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind;
typedef typename glue_shapes<typename evaluator_traits<MatrixType>::Shape, TriangularShape>::type Shape;
// 1 if assignment A = B assumes aliasing when B is of type T and thus B needs to be evaluated into a
// temporary; 0 if not.
static const int AssumeAliasing = 0;
};
template<typename MatrixType, unsigned int Mode>

View File

@ -304,7 +304,6 @@ struct evaluator_traits<Homogeneous<ArgType,Direction> >
{
typedef typename storage_kind_to_evaluator_kind<typename ArgType::StorageKind>::Kind Kind;
typedef HomogeneousShape Shape;
static const int AssumeAliasing = 0;
};
template<> struct AssignmentKind<DenseShape,HomogeneousShape> { typedef Dense2Dense Kind; };

View File

@ -211,8 +211,6 @@ struct evaluator_traits<SparseSelfAdjointView<MatrixType,Mode> >
{
typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind;
typedef SparseSelfAdjointShape Shape;
static const int AssumeAliasing = 0;
};
struct SparseSelfAdjoint2Sparse {};

View File

@ -691,7 +691,6 @@ struct evaluator_traits<SparseQRMatrixQReturnType<SparseQRType> >
typedef typename SparseQRType::MatrixType MatrixType;
typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind;
typedef SparseShape Shape;
static const int AssumeAliasing = 0;
};
template< typename DstXprType, typename SparseQRType>

View File

@ -145,14 +145,31 @@ template<typename MatrixType> void product(const MatrixType& m)
VERIFY_IS_APPROX(res.col(r).noalias() = square * square.col(r), (square * square.col(r)).eval());
// inner product
Scalar x = square2.row(c) * square2.col(c2);
VERIFY_IS_APPROX(x, square2.row(c).transpose().cwiseProduct(square2.col(c2)).sum());
{
Scalar x = square2.row(c) * square2.col(c2);
VERIFY_IS_APPROX(x, square2.row(c).transpose().cwiseProduct(square2.col(c2)).sum());
}
// outer product
VERIFY_IS_APPROX(m1.col(c) * m1.row(r), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
VERIFY_IS_APPROX(m1.row(r).transpose() * m1.col(c).transpose(), m1.block(r,0,1,cols).transpose() * m1.block(0,c,rows,1).transpose());
VERIFY_IS_APPROX(m1.block(0,c,rows,1) * m1.row(r), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
VERIFY_IS_APPROX(m1.col(c) * m1.block(r,0,1,cols), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
VERIFY_IS_APPROX(m1.leftCols(1) * m1.row(r), m1.block(0,0,rows,1) * m1.block(r,0,1,cols));
VERIFY_IS_APPROX(m1.col(c) * m1.topRows(1), m1.block(0,c,rows,1) * m1.block(0,0,1,cols));
{
VERIFY_IS_APPROX(m1.col(c) * m1.row(r), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
VERIFY_IS_APPROX(m1.row(r).transpose() * m1.col(c).transpose(), m1.block(r,0,1,cols).transpose() * m1.block(0,c,rows,1).transpose());
VERIFY_IS_APPROX(m1.block(0,c,rows,1) * m1.row(r), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
VERIFY_IS_APPROX(m1.col(c) * m1.block(r,0,1,cols), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
VERIFY_IS_APPROX(m1.leftCols(1) * m1.row(r), m1.block(0,0,rows,1) * m1.block(r,0,1,cols));
VERIFY_IS_APPROX(m1.col(c) * m1.topRows(1), m1.block(0,c,rows,1) * m1.block(0,0,1,cols));
}
// Aliasing
{
ColVectorType x(cols); x.setRandom();
ColVectorType z(x);
ColVectorType y(cols); y.setZero();
ColSquareMatrixType A(cols,cols); A.setRandom();
// CwiseBinaryOp
VERIFY_IS_APPROX(x = y + A*x, A*z);
x = z;
// CwiseUnaryOp
VERIFY_IS_APPROX(x = Scalar(1.)*(A*x), A*z);
}
}

View File

@ -9,6 +9,27 @@
#include "product.h"
template<typename T>
void test_aliasing()
{
int rows = internal::random<int>(1,12);
int cols = internal::random<int>(1,12);
typedef Matrix<T,Dynamic,Dynamic> MatrixType;
typedef Matrix<T,Dynamic,1> VectorType;
VectorType x(cols); x.setRandom();
VectorType z(x);
VectorType y(rows); y.setZero();
MatrixType A(rows,cols); A.setRandom();
// CwiseBinaryOp
VERIFY_IS_APPROX(x = y + A*x, A*z); // OK because "y + A*x" is marked as "assume-aliasing"
x = z;
// CwiseUnaryOp
VERIFY_IS_APPROX(x = T(1.)*(A*x), A*z); // OK because 1*(A*x) is replaced by (1*A*x) which is a Product<> expression
x = z;
// VERIFY_IS_APPROX(x = y-A*x, -A*z); // Not OK in 3.3 because x is resized before A*x gets evaluated
x = z;
}
void test_product_large()
{
for(int i = 0; i < g_repeat; i++) {
@ -17,6 +38,8 @@ void test_product_large()
CALL_SUBTEST_3( product(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_4( product(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
CALL_SUBTEST_5( product(Matrix<float,Dynamic,Dynamic,RowMajor>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_1( test_aliasing<float>() );
}
#if defined EIGEN_TEST_PART_6

View File

@ -43,10 +43,16 @@ template<typename MatrixType> void product_notemporary(const MatrixType& m)
r1 = internal::random<Index>(8,rows-r0);
VERIFY_EVALUATION_COUNT( m3 = (m1 * m2.adjoint()), 1);
VERIFY_EVALUATION_COUNT( m3 = (m1 * m2.adjoint()).transpose(), 1);
VERIFY_EVALUATION_COUNT( m3.noalias() = m1 * m2.adjoint(), 0);
VERIFY_EVALUATION_COUNT( m3 = s1 * (m1 * m2.transpose()), 1);
// VERIFY_EVALUATION_COUNT( m3 = m3 + s1 * (m1 * m2.transpose()), 1);
VERIFY_EVALUATION_COUNT( m3.noalias() = s1 * (m1 * m2.transpose()), 0);
VERIFY_EVALUATION_COUNT( m3 = m3 + (m1 * m2.adjoint()), 1);
VERIFY_EVALUATION_COUNT( m3 = m3 + (m1 * m2.adjoint()).transpose(), 1);
VERIFY_EVALUATION_COUNT( m3.noalias() = m3 + m1 * m2.transpose(), 0);
VERIFY_EVALUATION_COUNT( m3.noalias() += m3 + m1 * m2.transpose(), 0);
VERIFY_EVALUATION_COUNT( m3.noalias() -= m3 + m1 * m2.transpose(), 0);